Dynamic Analysis of a Novel Chaotic Map Based on a Non-Locally Active Memristor and a Locally Active Memristor and Its STM32 Implementation
Abstract
1. Introduction
2. MLM Discrete Map
2.1. Cosine Memristor
2.2. Locally Active Discrete Memristor
2.3. MLM Model
2.4. Analysis of Fixed Points
3. Dynamics Analysis
3.1. Parameters Relied Dynamics
3.1.1. Coupling Parameters Relied Dynamics
3.1.2. Internal Frequencies Relied Dynamics
3.2. Complexity Analysis
3.2.1. Spectral Entropy Complexity Analysis
3.2.2. C0 Complexity Analysis
3.2.3. Permutation Entropy Complexity Analysis
3.2.4. The Impact of Internal Frequencies on Complexity Distribution
4. Application in PRNG
4.1. Pseudo-Random Numbers Generator
4.2. NIST SP800-22 Test
4.3. Information Entropy
4.4. Autocorrelation Analysis
5. Hardware Implementation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhuang, J.; Xia, Y.; Bai, Y.; Cao, J.; Gu, L. Fixed-time synchronization of the impulsive memristor-based neural networks. Commun. Nonlinear Sci. Numer. Simul. 2019, 77, 40–53. [Google Scholar] [CrossRef]
- Yao, P.; Wu, H.; Gao, B.; Tang, J.; Zhang, Q.; Zhang, W.; Yang, J.J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Wang, X.; Strachan, J.P.; Yang, Y.; Lu, W.D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 2022, 7, 575–591. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, P.; Ma, J. An adaptive energy regulation in a memristive map linearized from a circuit with two memristive channels. Commun. Theor. Phys. 2024, 76, 035004. [Google Scholar] [CrossRef]
- Sivaganesh, G.; Srinivasan, K.; Fozin, T.F.; Pradeep, R.G. Emergence of chaotic hysteresis in a second-order non-autonomous chaotic circuit. Chaos Solitons Fractals 2023, 174, 113884. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Zhong, Q.; Liu, S.; Lei, T. A memristive chaotic map with only one bifurcation parameter. Nonlinear Dyn. 2024, 112, 3869–3886. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Du, S.; Yao, W.; Sun, Y. A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting. Chaos Solitons Fractals 2023, 172, 113518. [Google Scholar] [CrossRef]
- Chua, L. Memristor—The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Chua, L.O.; Kang, S.M. Memristive devices and systems. Proc. IEEE 1976, 64, 209–223. [Google Scholar] [CrossRef]
- Chua, L.O. The Fourth Element. Proc. IEEE 2012, 100, 1920–1927. [Google Scholar] [CrossRef]
- Chua, L. Everything You Wish to Know About Memristors But Are Afraid to Ask. Radioengineering 2015, 24, 319–368. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Q.; Sang, H.; Li, K.; Yu, X.; Xiong, W. Dynamic analysis of a novel 3D chaotic map with two internal frequencies. Sci. Rep. 2025, 15, 5952. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, Z.; Tan, F.; Chen, P. Multi-image encryption based on new two-dimensional hyperchaotic model via cyclic shift coding of deoxyribonucleic acid. Expert Syst. Appl. 2025, 281, 127475. [Google Scholar] [CrossRef]
- Zourmba, K.; Effa, J.Y.; Fischer, C.; Rodríguez-Muñoz, J.D.; Moreno-Lopez, M.F.; Tlelo-Cuautle, E.; Nkapkop, J.D.D. Fractional order 1D memristive time-delay chaotic system with application to image encryption and FPGA implementation. Math. Comput. Simul. 2025, 227, 58–84. [Google Scholar] [CrossRef]
- Bao, B.C.; Bao, H.; Wang, N.; Chen, M.; Xu, Q. Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 2017, 94, 102–111. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, C.; Zhang, X.; Yao, W. Various Attractors, Coexisting Attractors and Antimonotonicity in a Simple Fourth-Order Memristive Twin-T Oscillator. Int. J. Bifurc. Chaos 2018, 28, 1850050. [Google Scholar] [CrossRef]
- Ma, X.; Mou, J.; Liu, J.; Ma, C.; Yang, F.; Zhao, X. A novel simple chaotic circuit based on memristor–memcapacitor. Nonlinear Dyn. 2020, 100, 2859–2876. [Google Scholar] [CrossRef]
- Hu, C.; Tian, Z.; Wang, Q.; Zhang, X.; Liang, B.; Jian, C.; Wu, X. A memristor-based VB2 chaotic system: Dynamical analysis, circuit implementation, and image encryption. Optik 2022, 269, 169878. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, G.; Wang, X. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system. Chaos Interdiscip. J. Nonlinear Sci. 2016, 26, 073107. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Li, Y.; Li, W.; Yao, Q.; Gao, H. Extremely multi-stable grid-scroll memristive chaotic system with omni-directional extended attractors and application of weak signal detection. Chaos Solitons Fractals 2025, 190, 115791. [Google Scholar] [CrossRef]
- Lai, Q.; Wan, Z.; Kuate, P.D.K. Generating Grid Multi-Scroll Attractors in Memristive Neural Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 1324–1336. [Google Scholar] [CrossRef]
- Wang, S. A novel memristive chaotic system and its adaptive sliding mode synchronization. Chaos Solitons Fractals 2023, 172, 113533. [Google Scholar] [CrossRef]
- He, S.; Sun, K.; Peng, Y.; Wang, L. Modeling of discrete fracmemristor and its application. Chaos Interdiscip. J. Nonlinear Sci. 2020, 26, 073107. [Google Scholar]
- He, S.; Zhan, D.; Wang, H.; Sun, K.; Peng, Y. Discrete Memristor and Discrete Memristive Systems. Entropy 2022, 24, 786. [Google Scholar] [CrossRef]
- Wang, M.; An, M.; Zhang, X.; Iu, H.H.-C. Two-Variable Boosting Bifurcation in a Hyperchaotic Map and Its Hardware Implementation. Nonlinear Dyn. 2022, 111, 1871–1889. [Google Scholar] [CrossRef]
- Wang, X.; Teng, L.; Jiang, D.; Leng, Z.; Wang, X. Triple-image visually secure encryption scheme based on newly designed chaotic map and parallel compressive sensing. Eur. Phys. J. Plus 2023, 138, 156. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, K.; He, S. A discrete memristor model and its application in Hénon map. Chaos Solitons Fractals 2020, 137, 109873. [Google Scholar] [CrossRef]
- Li, H.; Hua, Z.; Bao, H.; Zhu, L.; Chen, M.; Bao, B. Two-Dimensional Memristive Hyperchaotic Maps and Application in Secure Communication. IEEE Trans. Ind. Electron. 2021, 68, 9931–9940. [Google Scholar] [CrossRef]
- Yuan, F.; Xing, G.; Deng, Y. Flexible cascade and parallel operations of discrete memristor. Chaos Solitons Fractals 2023, 166, 112888. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, Z.; Wu, X.; Li, K.; Sang, H.; Yu, X. A 5D super-extreme-multistability hyperchaotic map based on parallel-cascaded memristors. Chaos Solitons Fractals 2024, 187, 115452. [Google Scholar] [CrossRef]
- Luo, D.; Wang, C.; Deng, Q.; Yang, G. Discrete memristive hyperchaotic maps with high Lyapunov exponents. Nonlinear Dyn. 2025. [Google Scholar] [CrossRef]
- Lai, Q.; Wang, H.; Zhao, X.-W.; Ahmad, M. Shuffle medical image encryption scheme based on 4D memristive hyperchaotic map. Nonlinear Dyn. 2025, 113, 12289–12307. [Google Scholar] [CrossRef]
- Gao, S.; Iu, H.H.-C.; Erkan, U.; Simsek, C.; Toktas, A.; Cao, Y.; Wu, R.; Mou, J.; Li, Q.; Wang, C. A 3D Memristive Cubic Map with Dual Discrete Memristors: Design, Implementation, and Application in Image Encryption. IEEE Trans. Circuits Syst. Video Technol. 2025, 35, 7706–7718. [Google Scholar] [CrossRef]
- Bao, H.; Wang, R.; Tang, H.; Chen, M.; Bao, B. Discrete Memristive Hopfield Neural Network with Multi-Stripe/Wave Hyperchaos. IEEE Internet Things J. 2025, 12, 20902–20912. [Google Scholar] [CrossRef]
- Bao, H.; Fan, J.; Hua, Z.; Xu, Q.; Bao, B. Discrete Memristive Hopfield Neural Network and Application in Memristor-State-Based Encryption. IEEE Internet Things J. 2025, 12, 31843–31855. [Google Scholar] [CrossRef]
- Ma, M.; Yang, Y.; Qiu, Z.; Peng, Y.; Sun, Y.; Li, Z.; Wang, M. A locally active discrete memristor model and its application in a hyperchaotic map. Nonlinear Dyn. 2022, 107, 2935–2949. [Google Scholar] [CrossRef]
- Zhao, Q.; Bao, H.; Zhang, X.; Wu, H.; Bao, B. Complexity enhancement and grid basin of attraction in a locally active memristor-based multi-cavity map. Chaos Solitons Fractals 2024, 182, 114769. [Google Scholar] [CrossRef]
- Ma, M.; Lu, Y.; Li, Z.; Sun, Y.; Wang, C. Multistability and Phase Synchronization of Rulkov Neurons Coupled with a Locally Active Discrete Memristor. Fractal Fract. 2023, 7, 82. [Google Scholar] [CrossRef]
- Wu, G.-C.; Baleanu, D. Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 95–100. [Google Scholar] [CrossRef]
- Li, K.; Wang, Q.; Zheng, Q.; Yu, X.; Liang, B.; Tian, Z. Reducible-dimension discrete memristive chaotic map. Nonlinear Dyn. 2024, 113, 861–894. [Google Scholar] [CrossRef]
- He, S.; Sun, K.; Wang, H. Complexity Analysis and DSP Implementation of the Fractional-Order Lorenz Hyperchaotic System. Entropy 2015, 17, 8299–8311. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Zhao, X. Color image encryption algorithm based on novel 2D hyper-chaotic system and DNA crossover and mutation. Nonlinear Dyn. 2023, 111, 22679–22705. [Google Scholar] [CrossRef]
- Gu, Y.; Bao, H.; Xu, Q.; Zhang, X.; Bao, B. Cascaded Bi-Memristor Hyperchaotic Map. IEEE Trans. Circuits Syst. II 2023, 70, 3109–3113. [Google Scholar] [CrossRef]
- Kárpáti, A.; Kárpáti, V.; Szécsi, L. Vector Coupled Map Lattice PRNG for Monte Carlo Rendering. Period. Polytech. Electr. Eng. Comp. Sci. 2025. [Google Scholar] [CrossRef]
- Bauke, H.; Mertens, S. Random numbers for large-scale distributed Monte Carlo simulations. Phys. Rev. E 2007, 75, 066701. [Google Scholar] [CrossRef]
- Al-Mhadawi, M.M.; Albahrani, E.A.; Lafta, S.H. Efficient and secure chaotic PRNG for color image encryption. Microprocess. Microsyst. 2023, 101, 104911. [Google Scholar] [CrossRef]
- Dahiya, P.; Shumailov, I.; Anderson, R. Machine Learning needs Better Randomness Standards: Randomised Smoothing and PRNG-based attacks. In Proceedings of the 33rd USENIX Security Symposium (USENIX Security 24), Philadelphia, PA, USA, 14–16 August 2024. [Google Scholar]
- Rukhin, A.; Soto, J.; Nechvatal, J.; Barker, E.; Leigh, S.; Levenson, M.; Banks, D.; Heckert, A.; Dray, J. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Booz-Allen and Hamilton Inc.: Mclean, VA, USA, 2001. [Google Scholar]
- Murillo-Escobar, D.; Vega-Pérez, K.; Murillo-Escobar, M.A.; Arellano-Delgado, A.; López-Gutiérrez, R.M. Comparison of two new chaos-based pseudorandom number generators implemented in microcontroller. Integration 2024, 96, 102130. [Google Scholar] [CrossRef]
Maps | LE1, LE2 | SE | C0 | PE |
---|---|---|---|---|
This work | 16.11, 16.04 | 0.9575 | 1 | 0.9942 |
2D-MLM [29] | 0.2916, 0.0945 | 0.8247 | - | - |
2D-MTM [29] | 0.3226, 0.1507 | 0.8573 | - | - |
3D-MCM [34] | -, - | 0.7559 | 0.4621 | 0.8268 |
SEDM map [41] | 0.251, 0.0105 | 0.8902 | - | - |
2D-SICM [43] | 5.3788, - | - | - | 0.9678 |
CBM map [44] | 0.2298, 0.0394 | 0.5759 | - | - |
Testing Item | (k1, k2, d1, d2) = (1, 4, 1, 1) | (k1, k2, d1, d2) = (1, 5, 100, 1) | ||
---|---|---|---|---|
p-ValueT (≥0.0001) | Pass Rate (≥0.9628) | p-ValueT (≥0.0001) | Pass Rate (≥0.9628) | |
Frequency | 0.8195 | 0.9917 | 0.7727 | 1 |
Block Frequency | 0.4373 | 0.9917 | 0.3641 | 1 |
Runs | 0.4846 | 0.9917 | 0.3115 | 0.9917 |
Longest runs | 0.5852 | 0.9833 | 0.2873 | 0.9833 |
Rank | 0.9001 | 0.9833 | 0.3242 | 1 |
FFT | 0.9320 | 0.9750 | 0.2757 | 0.9917 |
None-ovla. Temp. 1 | 0.0333 | 0.9750 | 0.0266 | 0.9750 |
Ovla. Temp. | 0.6025 | 1 | 0.4220 | 1 |
Universal | 0.1952 | 0.9917 | 0.5341 | 0.9917 |
Linear complexity | 0.2873 | 1 | 0.2873 | 0.9750 |
Serial (1st) | 0.9320 | 1 | 0.1223 | 0.995833 |
Serial (2nd) | 0.8486 | 1 | 0.7399 | 0.995833 |
Appr. entropy | 0.0179 | 1 | 0.5009 | 0.995833 |
Cum. Sums (F) | 0.0602 | 0.9917 | 0.9982 | 1 |
Cum. Sums (B) | 0.5341 | 0.9917 | 0.8755 | 0.9917 |
Ran. Exc. 2 | 0.1329 | 0.9750 | 0.0414 | 0.9833 |
Ran. Exc. Var. 3 | 0.0320 | 0.9750 | 0.0414 | 0.9833 |
Success counts | 15/15 | 15/15 | 15/15 | 15/15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, H.; Wang, Q.; Li, K.; Chen, Y.; Yang, Z. Dynamic Analysis of a Novel Chaotic Map Based on a Non-Locally Active Memristor and a Locally Active Memristor and Its STM32 Implementation. Electronics 2025, 14, 3374. https://doi.org/10.3390/electronics14173374
Sang H, Wang Q, Li K, Chen Y, Yang Z. Dynamic Analysis of a Novel Chaotic Map Based on a Non-Locally Active Memristor and a Locally Active Memristor and Its STM32 Implementation. Electronics. 2025; 14(17):3374. https://doi.org/10.3390/electronics14173374
Chicago/Turabian StyleSang, Haiwei, Qiao Wang, Kunshuai Li, Yuling Chen, and Zongyun Yang. 2025. "Dynamic Analysis of a Novel Chaotic Map Based on a Non-Locally Active Memristor and a Locally Active Memristor and Its STM32 Implementation" Electronics 14, no. 17: 3374. https://doi.org/10.3390/electronics14173374
APA StyleSang, H., Wang, Q., Li, K., Chen, Y., & Yang, Z. (2025). Dynamic Analysis of a Novel Chaotic Map Based on a Non-Locally Active Memristor and a Locally Active Memristor and Its STM32 Implementation. Electronics, 14(17), 3374. https://doi.org/10.3390/electronics14173374