PriKMet: Prior-Guided Pointer Meter Reading for Automated Substation Inspections
Abstract
1. Introduction
- Innovative Meter Dial Detection and Keypoint Localization: We present a novel approach to meter dial detection, coupled with keypoint localization, that enhances the generalization of the model. This technique is robust to environmental challenges such as poor lighting, occlusion, and blurring, which are often encountered in real-world power equipment inspections.
- Effective Use of Prior Information: Our algorithm makes use of predefined information, such as inspection routes and meter range data, to interpret meter readings accurately. This use of prior information reduces the uncertainty caused by environmental interference and enhances the accuracy of the readings.
- UAV Inspection Error Correction: We introduce a correction mechanism that compensates for any deviations in the UAV position during inspections. This adjustment ensures that the meter readings are accurate despite any operational inconsistencies, thus making the algorithm suitable for real-time, field-deployed systems.
2. PriKMet: Prior-Guided Pointer Meter Reader
2.1. PriKMet Network
2.1.1. Detection Module
2.1.2. Pointer Keypoint Localization Module
2.2. Angle Calculation and Offset Correction
3. Experiment Results
3.1. Benchmark
3.1.1. Training and Test Dataset
3.1.2. Evaluation Metric
3.2. Implementation Details
3.3. Main Results
3.3.1. Meter Detection Results
3.3.2. Analysis of Meter Reading Accuracy
3.3.3. Inference Time Comparison
3.4. Ablation Study
3.4.1. Ablation Study on Meter Detection and Result Correction
3.4.2. Ablation Study on Different Backbones
3.5. Visualization
3.6. Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sala, A.; Barbetti, L.; Rosini, A. Green web meter: Structuring and implementing a Real-Time digital sustainability monitoring system. Sustainability 2024, 16, 7627. [Google Scholar] [CrossRef]
- Weigel, P.; Fischedick, M.; Viebahn, P. Holistic evaluation of digital applications in the energy sector—Evaluation framework development and application to the use case smart meter roll-out. Sustainability 2021, 13, 6834. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, C.; Yu, M.; Huang, Z. Lightweight Design of Vibration Control Devices for Offshore Substations Based on Inerters. Sustainability 2024, 16, 3385. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, L.; Zhang, D.; Ke, T.; Li, J. Pointer meter recognition method based on Yolov7 and hough transform. Appl. Sci. 2023, 13, 8722. [Google Scholar] [CrossRef]
- Chen, M.C.; Yen, S.Y.; Lin, Y.F.; Tsai, M.Y.; Chuang, T.H. Intelligent Casting Quality Inspection Method Integrating Anomaly Detection and Semantic Segmentation. Machines 2025, 13, 317. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Cheng, R. Automatic reading system for analog instruments based on computer vision and inspection robot for power plant. In Proceedings of the 2018 10th International Conference on Modelling, Identification and Control (ICMIC), Guiyang, China, 2–4 July 2018; pp. 1–6. [Google Scholar]
- Imran, M.; Anwar, H.; Tufail, M.; Khan, A.; Khan, M.; Ramli, D.A. Image-based automatic energy meter reading using deep learning. Comput. Mater. Contin. 2023, 74, 203–216. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, J.; Kang, B.; Wang, Y. A Keypoint Driven Robust Pointer Meter Reading Method with Enhanced Structure for Complex Environments. IEEE Trans. Instrum. Meas. 2025, 74, 5023116. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, H.; Bian, Q.; Zhao, C.; Zhou, B.; Chen, Z.; Basit, M.A. Multi-camera vision-based synchronous positioning and mapping for green construction of electric substations. Front. Energy Res. 2024, 12, 1370873. [Google Scholar] [CrossRef]
- Sun, S.; Li, Y.; Yi, Z.; Wang, K.; Yu, P.; Zhao, K.; Yang, T. Review of autonomous inspection technology for power lines using UAVs. In Proceedings of the 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT), Qingdao, China, 2–4 July 2021; pp. 481–484. [Google Scholar]
- Juan, Y.; Niu, G.; Yang, Y.; Dai, Y.; Zhang, J.; Han, Y.; Sun, B. Knowledge-aware design of high-strength aviation aluminum alloys via machine learning. J. Mater. Res. Technol. 2023, 24, 346–361. [Google Scholar]
- Niu, J.; Ma, X.; Li, R. SC-ViT: Semantic Contrast Vision Transformer for Scene Recognition. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), Yokohama, Japan, 30 June–5 July 2024; pp. 1–8. [Google Scholar]
- Glenn, J. Yolov8. 2023. Available online: https://github.com/ultralytics/ultralytics/tree/main (accessed on 1 January 2020).
- Jiang, T.; Lu, P.; Zhang, L.; Ma, N.; Han, R.; Lyu, C.; Li, Y.; Chen, K. Rtmpose: Real-time multi-person pose estimation based on mmpose. arXiv 2023, arXiv:2303.07399. [Google Scholar]
- He, K.; Gkioxari, G. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Glenn, J. Yolov5 Release v7.0. 2022. Available online: https://github.com/ultralytics/yolov5/tree/v7.0 (accessed on 1 January 2020).
- Huang, X.; Wang, X.; Lv, W.; Bai, X.; Long, X.; Deng, K.; Dang, Q.; Han, S.; Liu, Q.; Hu, X.; et al. PP-YOLOE: An evolved version of PP-YOLO towards real-time object detection with higher precision. arXiv 2021, arXiv:2104.10419. [Google Scholar]
- Li, C.; Li, L.; Geng, Y.; Jiang, H.; Cheng, M.; Zhang, B.; Ke, Z.; Xu, X.; Chu, X. YOLOv6 v3.0: A full-scale reloading. arXiv 2022, arXiv:2301.05586v1. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229. [Google Scholar]
- Wang, Y.; Zhang, X.; Yang, T.; Sun, J. Anchor DETR: Query design for transformer-based object detection. arXiv 2021, arXiv:2103.07401. [Google Scholar]
- Meng, D.; Chen, X.; Fan, Z.; Zeng, G.; Li, H.; Yuan, Y. Conditional DETR for Fast Training Convergence. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Maican, M. Efficient DETR: Improving end-to-end object detector with dense prior. arXiv 2021, arXiv:2104.06493. [Google Scholar]
- Gao, P.; Zheng, M.; Wang, X.; Dai, J.; Li, H. Fast convergence of DETR with spatially modulated co-attention. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3621–3630. [Google Scholar]
- Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable DETR: Deformable transformers for end-to-end object detection. arXiv 2020, arXiv:2010.04159. [Google Scholar]
- Liu, S.; Li, F.; Zhang, H.; Yang, X.; Qi, X.; Su, H.; Zhu, J.; Zhang, L. DAB-DETR: Dynamic anchor boxes are better queries for DETR. arXiv 2022, arXiv:2201.12329. [Google Scholar]
- Duburcq, A.; Schramm, F.; Boéris, G.; Bredeche, N.; Chevaleyre, Y. DN-DETR: Accelerate DETR training by introducing denoising. arXiv 2022, arXiv:2203.01148. [Google Scholar]
- Zhang, H.; Li, F.; Liu, S.; Zhang, L.; Su, H.; Zhu, J.; Ni, L.M.; Shum, H. DINO: DETR with improved denoising anchor boxes for end-to-end object detection. arXiv 2022, arXiv:2203.01148. [Google Scholar]
Training Set | Test Set | ||
---|---|---|---|
Description | Quantity | Description | Quantity |
UAV Inspection Images | 3037 | UAV Inspection Images | 200 |
Partial Meter Images | 2199 | Partial Meter Images | 200 |
Method | AP50 | AP75 | Recall | Precision |
---|---|---|---|---|
YOLOv5-L [16] | 97.9 | 79.2 | - | - |
PPYOLOE-L [17] | 98.0 | 79.6 | 97.6 | 99.1 |
YOLOv6-L [18] | 98.3 | 79.8 | 97.7 | 99.1 |
YOLOv7-L [19] | 97.7 | 80.2 | 97.5 | 98.2 |
YOLOv8-L [13] | 98.2 | 80.9 | 97.5 | 98.3 |
DETR-DC5 [20] | 93.6 | 76.3 | 95.2 | 92.1 |
Anchor-DETR-DC5 [21] | 93.3 | 76.2 | 92.2 | 94.0 |
Conditional-DETR-DC5 [22] | 91.4 | 75.2 | 88.5 | 92.3 |
Efficient-DETR [23] | 93.2 | 72.1 | 89.1 | 94.3 |
SMCA-DETR [24] | 86.5 | 75.3 | 89.2 | 85.2 |
Deformable-DETR [25] | 85.3 | 76.2 | 84.1 | 87.2 |
DAB-Deformable-DETR [26] | 86.1 | 76.3 | 82.2 | 88.1 |
DAB-Deformable-DETR++ [26] | 87.1 | 78.8 | 86.3 | 88.4 |
DN-Deformable-DETR [27] | 87.2 | 78.6 | 88.3 | 86.0 |
DN-Deformable-DETR++ [27] | 87.4 | 79.5 | 86.9 | 90.2 |
DINO-Deformable-DETR [28] | 89.4 | 80.3 | 87.2 | 89.9 |
PriKMet | 99.4 | 81.1 | 98.2 | 99.8 |
Method | Precision | Recall | Accuracy | ||
---|---|---|---|---|---|
Mask RCNN | 86.5 | 70.8 | 91.6 | 92.1 | 82.3 |
PriKMet | 90.7 | 72.8 | 94.2 | 95.8 | 85.5 |
Method | Tesla V100 | AGX Orin | Jetson TX2 | |||
---|---|---|---|---|---|---|
Time (ms) | FPS | Time (ms) | FPS | Time (ms) | FPS | |
YOLOv8-L | 38.2 | 26.2 | 68.5 | 14.6 | 152.3 | 6.6 |
Mask R-CNN | 112.7 | 8.9 | 203.4 | 4.9 | 487.6 | 2.1 |
DETR-DC5 | 89.5 | 11.2 | 165.2 | 6.1 | 398.7 | 2.5 |
PP-YOLOE-L | 35.8 | 27.9 | 62.3 | 16.1 | 138.6 | 7.2 |
PriKMet (Ours) | 32.4 | 30.9 | 56.8 | 17.6 | 126.5 | 7.9 |
Method | Accuracy | |||
---|---|---|---|---|
PriKMet | without detection | 40.3 | 39.8 | 43.2 |
basic model | 90.7 | 72.8 | 83.7 | |
with correction | 90.7 | 72.8 | 85.5 |
Backbone | AP50 (Detection) | (Keypoint) | Reading Accuracy (%) |
---|---|---|---|
CSPNet | 99.4 | 90.7 | 85.5 |
ResNet-50 | 98.1 | 88.2 | 82.3 |
EfficientNet-B4 | 98.5 | 89.1 | 83.7 |
Swin Transformer | 98.8 | 89.8 | 84.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, H.; Feng, J.; Wang, Y.; He, W.; Yan, Y.; Qi, D. PriKMet: Prior-Guided Pointer Meter Reading for Automated Substation Inspections. Electronics 2025, 14, 3194. https://doi.org/10.3390/electronics14163194
Chu H, Feng J, Wang Y, He W, Yan Y, Qi D. PriKMet: Prior-Guided Pointer Meter Reading for Automated Substation Inspections. Electronics. 2025; 14(16):3194. https://doi.org/10.3390/electronics14163194
Chicago/Turabian StyleChu, Haidong, Jun Feng, Yidan Wang, Weizhen He, Yunfeng Yan, and Donglian Qi. 2025. "PriKMet: Prior-Guided Pointer Meter Reading for Automated Substation Inspections" Electronics 14, no. 16: 3194. https://doi.org/10.3390/electronics14163194
APA StyleChu, H., Feng, J., Wang, Y., He, W., Yan, Y., & Qi, D. (2025). PriKMet: Prior-Guided Pointer Meter Reading for Automated Substation Inspections. Electronics, 14(16), 3194. https://doi.org/10.3390/electronics14163194