WaveCORAL-DCCA: A Scalable Solution for Rotor Fault Diagnosis Across Operational Variabilities
Abstract
1. Introduction
- Introduced a novel framework that integrates wavelet-based feature extraction with a DCCA network enhanced by the CORAL loss function. This framework effectively mitigates domain shifts and OVs, offering a robust solution for rotor fault diagnosis;
- Applied label smoothing to the entropy loss function, improving classification performance by mitigating overconfident predictions, enhancing generalisation, and increasing robustness to noisy labels;
- Achieved high diagnostic accuracy even with limited unlabelled target domain data, addressing the significant challenge of data scarcity in real-world industrial applications;
- Demonstrated the framework’s broad applicability through experiments on both experimental and simulated rotor system datasets, showing its effectiveness across different machines and fault types.
2. Materials and Methods
2.1. Wavelet Transformation
2.2. CORAL Loss
2.3. Deep Canonical Correlation Analysis
2.4. WaveCORAL-DCCA
Algorithm 1. Pseudocode of WaveCORAL-DCCA and the classification phase. |
Input: Datasets from source dataset (, ) and target dataset (, ), wavelet level (k), learning rates (), dropout rate (), batch size, hidden dimension (), output dimension (), number of epochs (), label smoothing (), entropy coefficient (); Output: Trained domain adaptation and classifier parameters ( and ), evaluation metrics (accuracy , confusion matrix ); Feature Extraction using WT 1 Load source (, ) and target (, ) datasets, 2 Apply WT on and to extract detail coefficients at level (); Domain adaptation using DCCA with CORAL loss 3 Initialise DCCA model with input dimension (), hidden dimension (), output dimension (), dropout rate (), separate weights for source and target features, 4 For each mini-batch in and : • Perform a forward pass through the DCCA model for both source and target domains; 5 Initialise CORAL loss function; 6 For each epoch : 7 For each mini-batch in and : 8 Pass source and target features through DCCA and extract feature representations, 9 Compute CORAL loss () between source and target domains, 10 Update model parameters () using gradient descent: • ; Train Classifier on Extracted Features 11 Initialise classifier () with: • Hidden layers, • Output layer, • Dropout rate (); 12 For each epoch : • For each mini-batch in : 13 Extract DCCA features from the source domain, 14 Perform a forward pass through the classifier to obtain predictions, 15 Compute classification loss using label smoothing (): • ; 16 Compute entropy loss ( • , 17 Compute total loss • , 18 Update model parameters using gradient descent: • , Evaluation on Target Domain 19 Evaluate the classifier on , • Extract DCCA features from and compute test accuracy: ; 20 Generate confusion matrix ; Result: Return trained model parameters and , test accuracy , confusion matrix . |
3. Case Studies
3.1. Large Experimental Dataset ‘L_E_D’
3.2. Small Experimental Dataset ‘S_E_D’
3.3. Numerical Dataset ‘N_D’
3.4. Summary of the Case Studies
4. Results
4.1. Fault Diagnosis Without DA
4.2. Fault Diagnosis with the Original DCCA Framework
4.3. Fault Diagnosis with WaveCORAL-DCCA
5. Comparison Study
6. Computational Efficiency and System Setup
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ARTL | Adaptation regularisation-based transfer learning |
BDA | Balanced distribution adaptation |
CCA | Canonical correlation analysis |
CDANs | Conditional domain adversarial networks |
CNNs | Convolutional neural networks |
CORAL | Correlation alignment |
DCCA | Deep canonical correlation analysis |
DA | Domain adaptation |
FE | Finite element |
JDA | Joint distribution adaptation |
MLP | Multi-layer perceptron |
MMD | Maximum mean discrepancy |
OVs | Operational variabilities |
TCA | Transfer component analysis |
TL | Transfer learning |
UDA | Unsupervised domain adaptation |
WT | Wavelet transformation |
References
- Wang, D.; Zhang, M.; Xu, Y.; Lu, W.; Yang, J.; Zhang, T. Metric-Based Meta-Learning Model for Few-Shot Fault Diagnosis Under Multiple Limited Data Conditions. Mech. Syst. Signal Process. 2021, 155, 107510. [Google Scholar] [CrossRef]
- Yin, Z.; Yang, Y.; Shen, G.; Li, Y.; Huang, L.; Hu, N. Dynamic Modeling, Analysis, and Experimental Study of Ball Screw Pairs with Nut Spalling Faults in Electromechanical Actuators. Mech. Syst. Signal Process. 2023, 184, 109751. [Google Scholar] [CrossRef]
- Li, Y.; Men, Z.; Bai, X.; Xia, Q.; Zhang, D. A Bearing Fault Diagnosis Method Based on M-SSCNN and M-LR Attention Mechanism. Struct. Health Monit. 2025, 24, 830–852. [Google Scholar] [CrossRef]
- Rezazadeh, N.; De Luca, A.; Perfetto, D.; Salami, M.R.; Lamanna, G. Systematic Critical Review of Structural Health Monitoring Under Environmental and Operational Variability: Approaches for Baseline Compensation, Adaptation, and Reference-Free Techniques. Smart Mater. Struct. 2025, 34, 073001. [Google Scholar] [CrossRef]
- Rezazadeh, N.; Annaz, F.; Jabbar, W.A.; Vieira Filho, J.; De Oliveira, M. A Transfer Learning Approach for Mitigating Temperature Effects on Wind Turbine Blades Damage Diagnosis. Struct. Health Monit. 2025, 14759217241313350. [Google Scholar] [CrossRef]
- Tang, S.; Ma, J.; Yan, Z.; Zhu, Y.; Khoo, B.C. Deep Transfer Learning Strategy in Intelligent Fault Diagnosis of Rotating Machinery. Eng. Appl. Artif. Intell. 2024, 134, 108678. [Google Scholar] [CrossRef]
- Gong, X.; Feng, K.; Du, W.; Li, B.; Fei, H. An Imbalance Multi-Faults Data Transfer Learning Diagnosis Method Based on Finite Element Simulation Optimization Model of Rolling Bearing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2024, 238, 8924–8940. [Google Scholar] [CrossRef]
- Rezazadeh, N.; Perfetto, D.; Polverino, A.; De Luca, A.; Lamanna, G. Guided Wave-Driven Machine Learning for Damage Classification with Limited Dataset in Aluminum Panel. Struct. Health Monit. 2024, 14759217241268394. [Google Scholar] [CrossRef]
- Liang, P.; Yu, Z.; Wang, B.; Xu, X.; Tian, J. Fault Transfer Diagnosis of Rolling Bearings across Multiple Working Conditions via Subdomain Adaptation and Improved Vision Transformer Network. Adv. Eng. Inform. 2023, 57, 102075. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, J.; Hu, Z.; Liu, J.; Jiang, X.; Shi, T. Cloud-Edge Test-Time Adaptation for Cross-Domain Online Machinery Fault Diagnosis via Customized Contrastive Learning. Adv. Eng. Inform. 2024, 61, 102514. [Google Scholar] [CrossRef]
- Rezazadeh, N.; Perfetto, D.; de Oliveira, M.; De Luca, A.; Lamanna, G. A Fine-Tuning Deep Learning Framework to Palliate Data Distribution Shift Effects in Rotary Machine Fault Detection. Struct. Health Monit. 2024, 14759217241295951. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, H.; Wang, Y.; Wu, P.; Huang, W.; Wu, D. Structural Rotor Rub-Impact Diagnosis Under Intricate Noise Interferences Based on Targeted Component Extraction and Stochastic Resonance Enhancement. Struct. Health Monit. 2025, 24, 255–294. [Google Scholar] [CrossRef]
- Miao, M.; Wang, Y.; Yu, J. Temporal Self-Supervised Domain Adaptation Network for Machinery Fault Diagnosis Under Multiple Non-Ideal Conditions. Reliab. Eng. Syst. Saf. 2024, 251, 110347. [Google Scholar] [CrossRef]
- Rezazadeh, N.; Perfetto, D.; Caputo, F.; De Luca, A. Enhancing Air Compressor Fault Diagnosis: A Comparative Study of GPT-2 and Traditional Machine Learning Models. Macromol. Symp. 2025, 414, 7057. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Purohit, A.; Singh, J. Genetically Optimised SMOTE-Based Adversarial Discriminative Domain Adaptation for Rotor Fault Diagnosis at Variable Operating Conditions. Meas. Sci. Technol. 2024, 35, 106109. [Google Scholar] [CrossRef]
- Espinoza-Sepulveda, N.; Sinha, J. Two-Step Vibration-Based Machine Learning Model for the Fault Detection and Diagnosis in Rotating Machine and Its Blind Application. Struct. Health Monit. 2025, 24, 1029–1042. [Google Scholar] [CrossRef]
- Wang, J.; Ahmed, H.; Chen, X.; Yan, R.; Nandi, A.K. Improved Adversarial Transfer Network for Bearing Fault Diagnosis Under Variable Working Conditions. Appl. Sci. 2024, 14, 2253. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Wan, Z.; Zhang, D.; Jiang, D. Rotor Fault Diagnosis Using Domain-Adversarial Neural Network with Time-Frequency Analysis. Machines 2022, 10, 610. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Tang, J.; Zhang, X. Research on Fault Diagnosis of Gas Turbine Rotor Based on Adversarial Discriminative Domain Adaption Transfer Learning. Measurement 2022, 196, 111174. [Google Scholar] [CrossRef]
- Liu, Z.H.; Lu, B.L.; Wei, H.L.; Chen, L.; Li, X.H.; Wang, C.T. A Stacked Auto-Encoder Based Partial Adversarial Domain Adaptation Model for Intelligent Fault Diagnosis of Rotating Machines. IEEE Trans. Ind. Inform. 2021, 17, 6798–6809. [Google Scholar] [CrossRef]
- Zou, Y.; Yu, Z.; Vijaya Kumar, B.V.K.; Wang, J. Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer: Berlin/Heidelberg, Germany, 2018; Volume 11207. [Google Scholar]
- Long, M.; Cao, Y.; Cao, Z.; Wang, J.; Jordan, M.I. Transferable Representation Learning with Deep Adaptation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 3071–3085. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Ali, R.; Lewis, J.; Büyüköztürk, O. Deep Learning-Based Structural Health Monitoring. Autom. Constr. 2024, 161, 105328. [Google Scholar] [CrossRef]
- Sun, K.; Yin, A.; Lu, S. Domain Distribution Variation Learning via Adversarial Adaption for Helicopter Transmission System Fault Diagnosis. Mech. Syst. Signal Process. 2024, 215, 111419. [Google Scholar] [CrossRef]
- Han, S.; Wang, Z.; Zhang, H.; Zhang, F.; Han, Q. Flexible Rotor Unbalance Fault Location Method Based on Transfer Learning from Simulation to Experiment Data. Meas. Sci. Technol. 2023, 34, 125053. [Google Scholar] [CrossRef]
- Khan, A.; Kim, J.-S.; Kim, H.S. Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and Knowledge Transfer. Mathematics 2021, 10, 80. [Google Scholar] [CrossRef]
- Ma, Z.; Fu, L.; Dun, G.; Tan, D.; Xu, F.; Zhang, L. A Robust Domain Distribution Alignment Discriminative Network Driven by Physical Samples for Rotor-Bearing Fault Diagnosis. Knowl. Based Syst. 2024, 300, 112216. [Google Scholar] [CrossRef]
- Xiang, L.; Zhang, X.; Zhang, Y.; Hu, A.; Bing, H. A Novel Method for Rotor Fault Diagnosis Based on Deep Transfer Learning with Simulated Samples. Measurement 2023, 207, 112350. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Xue, Y. A New Weight-Based Dual Domain Adaptation Transfer Model for Bearing Fault Diagnosis Under Noisy and Cross-Domain Conditions. IEEE Access 2023, 11, 123766–123783. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, X.; Zhou, H.; Wang, J. Multi-Label Deep Transfer Learning Method for Coupling Fault Diagnosis. Mech. Syst. Signal Process. 2024, 212, 111327. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Liu, J.; Wu, B.; Hu, Y. Graph Features Dynamic Fusion Learning Driven by Multi-Head Attention for Large Rotating Machinery Fault Diagnosis with Multi-Sensor Data. Eng. Appl. Artif. Intell. 2023, 125, 106601. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Zhang, X.; Lu, Y. Self-Supervised Graph Feature Enhancement and Scale Attention for Mechanical Signal Node-Level Representation and Diagnosis. Adv. Eng. Inform. 2025, 65, 103197. [Google Scholar] [CrossRef]
- Rezazadeh, N.; de Oliveira, M.; Perfetto, D.; De Luca, A.; Caputo, F. Classification of Unbalanced and Bowed Rotors Under Uncertainty Using Wavelet Time Scattering, LSTM, and SVM. Appl. Sci. 2023, 13, 6861. [Google Scholar] [CrossRef]
- Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain Adaptation via Transfer Component Analysis. IEEE Trans. Neural Netw. 2011, 22, 199–210. [Google Scholar] [CrossRef]
- Brito, L.C.; Susto, G.A.; Brito, J.N.; Duarte, M.A.V. Mechanical Faults in Rotating Machinery Dataset (Normal, Unbalance, Misalignment, Looseness). Mendeley Data, V3. 2023. Available online: https://data.mendeley.com/datasets/zx8pfhdtnb/3 (accessed on 3 August 2025).
- Liu, D.; Xiao, Z.; Hu, X.; Zhang, C.; Malik, O.P. Feature Extraction of Rotor Fault Based on EEMD and Curve Code. Measurement 2019, 135, 712–724. [Google Scholar] [CrossRef]
- Peng, B.; Wan, S.; Bi, Y.; Xue, B.; Zhang, M. Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinery Fault Diagnosis. IEEE Trans. Cybern. 2021, 51, 4909–4923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, T.; Cui, G.; Pan, Y. Intelligent Machine Fault Diagnosis Using Convolutional Neural Networks and Transfer Learning. IEEE Access 2022, 10, 50959–50973. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Zhao, B. A Novel Adaptive Kernel-Guided Multi-Condition Abnormal Data Detection Method. Measurement 2023, 206, 112257. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Zhang, S.; Tang, G. A Fault Diagnosis Method for Rotating Machinery with Semi-Supervised Graph Convolutional Network and Images Converted from Vibration Signals. IEEE Sens. J. 2023, 23, 11946–11955. [Google Scholar] [CrossRef]
- Wang, J.; Ran, R.; Fang, B. GNPENet: A Novel Convolutional Neural Network with Local Structure for Fault Diagnosis. IEEE Trans. Instrum. Meas. 2024, 73, 3504316. [Google Scholar] [CrossRef]
- Darpe, A.K.; Gupta, K.; Chawla, A. Coupled Bending, Longitudinal and Torsional Vibrations of a Cracked Rotor. J. Sound Vib. 2004, 269, 33–60. [Google Scholar] [CrossRef]
- Bhaumik, D.; Bhaumik, D. Misalignment-Related Defect Detection Using Discrete Wavelet Transform. Int. J. Recent. Technol. Eng. 2023, 12, 97–101. [Google Scholar] [CrossRef]
- Yan, H.; Ding, Y.; Li, P.; Wang, Q.; Xu, Y.; Zuo, W. Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Long, M.; Wang, J.; Ding, G.; Sun, J.; Yu, P.S. Transfer Feature Learning with Joint Distribution Adaptation. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Wang, J.; Chen, Y.; Hao, S.; Feng, W.; Shen, Z. Balanced Distribution Adaptation for Transfer Learning. In Proceedings of the IEEE International Conference on Data Mining, ICDM, New Orleans, LA, USA, 18–21 November 2017. [Google Scholar]
- Long, M.; Wang, J.; Ding, G.; Pan, S.J.; Yu, P.S. Adaptation Regularization: A General Framework for Transfer Learning. IEEE Trans. Knowl. Data Eng. 2014, 26, 1076–1089. [Google Scholar] [CrossRef]
- Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional Adversarial Domain Adaptation. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018. [Google Scholar]
Parameter | Magnitude | Parameter | Magnitude |
---|---|---|---|
Disc mass | Bearing stiffness | ||
Disc eccentricity | Bearing damping | ||
Diametral moment of inertia of the disc | Motor phase angle | ||
Unbalancing phase angle | Motor-side pulley’s radius | ||
Shaft diameter | Torsional torque | ||
Larger shaft length | Centre of articulation | ||
Smaller shaft length | Flexure coupling bending | ||
Shaft density | Misalignment in the Y direction at node 6 | ||
Shaft Young’s modulus | Phase angle of misalignment |
Health Scenario | Number of Observations | Label | ||
---|---|---|---|---|
‘L_E_D’ | ‘S_E_D’ | ‘N_D’ | ||
Normal | 2100 | 45 | 45 | 0 |
Unbalanced | 2100 | 45 | 45 | 1 |
Misaligned | 2100 | 45 | 45 | 2 |
DA Model | Scenario | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
Original DCCA | i | 0.56 | 0.43 | 0.44 | 0.43 |
ii | 0 | 0 | 0 | 0 |
No. | Hyperparameter | Value(s) | No. | Hyperparameter | Value(s) |
---|---|---|---|---|---|
1 | Output dimension of DCCA | 16, 32 | 6 | Number of epochs in DCCA | 3, 10 |
2 | Hidden dimension of neural networks | 16, 32 | 7 | Coefficient of label smoothing | 0.01, 0.1, 1 |
3 | Learning rate for DCCA | 8 | Coefficient of entropy loss | 0.01, 0.1, 1 | |
4 | Batch size | 16, 32 | 9 | Random seed | 42 |
5 | Dropout rate in DCCA | 0.3, 0.4 | 10 | Optimiser for DCCA | Adam |
DA Model | Scenario | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
WaveCORAL-DCCA | i | 0.96 | 0.95 | 0.95 | 0.95 |
ii | 0.96 | 0.95 | 0.95 | 0.95 |
Component | Specification | Component | Specification |
---|---|---|---|
Operating System | Microsoft Windows 10 Enterprise (Build 19045) | Main libraries | PyTorch 2.0.1, Scikit-learn, NumPy, Matplotlib |
Processor | Intel Core i7-14700 (20 cores, 28 threads, 2.10 GHz) | Wavelet pre-processing | MATLAB® R2024a (external, for selected datasets) |
RAM | 32 GB (31.6 GB usable) | Execution mode | CPU only (no GPU utilised) |
Execution environment | Jupyter Notebook (Python 3.10) | Virtual memory | 36.4 GB total, 19.9 GB available |
Scenario | Source Domain | Target Domain | Total Samples | Grid Search Time | Maximum RAM Usage |
---|---|---|---|---|---|
i | 6300 | 180 | 6480 | 3.2 h | 12.3 GB |
ii | 6300 | 135 | 6435 | 4.1 h | 13.1 GB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezazadeh, N.; De Oliveira, M.; Lamanna, G.; Perfetto, D.; De Luca, A. WaveCORAL-DCCA: A Scalable Solution for Rotor Fault Diagnosis Across Operational Variabilities. Electronics 2025, 14, 3146. https://doi.org/10.3390/electronics14153146
Rezazadeh N, De Oliveira M, Lamanna G, Perfetto D, De Luca A. WaveCORAL-DCCA: A Scalable Solution for Rotor Fault Diagnosis Across Operational Variabilities. Electronics. 2025; 14(15):3146. https://doi.org/10.3390/electronics14153146
Chicago/Turabian StyleRezazadeh, Nima, Mario De Oliveira, Giuseppe Lamanna, Donato Perfetto, and Alessandro De Luca. 2025. "WaveCORAL-DCCA: A Scalable Solution for Rotor Fault Diagnosis Across Operational Variabilities" Electronics 14, no. 15: 3146. https://doi.org/10.3390/electronics14153146
APA StyleRezazadeh, N., De Oliveira, M., Lamanna, G., Perfetto, D., & De Luca, A. (2025). WaveCORAL-DCCA: A Scalable Solution for Rotor Fault Diagnosis Across Operational Variabilities. Electronics, 14(15), 3146. https://doi.org/10.3390/electronics14153146