Design of a Wideband Loaded Sleeve Monopole Embedded with Filtering High–Low Impedance Structure
Abstract
1. Introduction
2. Antenna Design and Configuration
2.1. Antenna Configuration
2.2. Design of Filtering Structure
2.3. Wideband Monopole
3. Experiment and Result Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, I.; Qiu, H.; Rahman, S.U.U.; Ahmad, T. Compact design of monopole antenna for SWB application with high BDR. Microw. Opt. Technol. Lett. 2023, 65, 1656–1663. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, N.; Chen, X.; Zhang, Z.-Y.; Qian, B.; Kishk, A.A. Wideband Cup Dielectric Resonator Antenna with Stable Omnidirectional Patterns. Appl. Comput. Electromagn. Soc. J. 2024, 39, 908–915. [Google Scholar] [CrossRef]
- Ramya; Fares, A.; Naresh, K. Design and Analysis of Dual Monopole Antennas for Long-Term Evolution and Ultra-Wideband Applications Narrow and Wide Band Variants. J. Nanoelectron. Optoelectron. 2024, 19, 716–723. [Google Scholar] [CrossRef]
- Ding, A.; Gan Theng, H.; Shen, Z. Design of a Compact and Wideband Printed Monopole Antenna with Stable Omnidirectional Radiation Patterns. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 1483–1487. [Google Scholar] [CrossRef]
- Abdollahvand, M.; Abbasi Arand, B.; Katoch, K.; Ghosh, S. A novel and compact ultra-wideband printed monopole antenna with enhanced bandwidth and dual-band stop properties. Microw. Opt. Technol. Lett. 2024, 66, e33990. [Google Scholar] [CrossRef]
- Xu, B.; Duan, C.; Zhang, L.; Wang, J.; Zhang, G. Research on Miniaturized and Wideband UHF Sensing Technology for Partial Discharge Detection of Power Equipment Based on Serpentine Bending. IEEE Sens. J. 2024, 24, 23951–23959. [Google Scholar]
- Su, H.; Shuai, S.; Jiao, Y.; Ou, J.-H.; Zhang, X.Y. Ultra-Wideband Omnidirectional Antenna with Stable Radiation Patterns Using CMA. IEEE Trans. Veh. Technol. 2024, 73, 10788–10792. [Google Scholar] [CrossRef]
- Qian, J.; Izquierdo, B.S.; Gao, S.; Wang, H.; Zhou, H.; Xu, H. A Cascaded Resonator Decoupling Network for Two Filtering Antennas. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 3187–3191. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Feng, L.; Zhang, X.; Wong, S.-W. A Coupling Matrix Synthesis Design for Filtering Antenna With Good Out-of-Band Suppression. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1582–1586. [Google Scholar] [CrossRef]
- Guo, J.; Chen, Y.; Yang, D.; Sun, K.; Pan, J.; Liu, S. Design of Wideband Filtering Patch Antenna Array With High Aperture Efficiency and Good Filtering Performance. IEEE Trans. Antennas Propag. 2024, 72, 974–979. [Google Scholar] [CrossRef]
- Platt, J.M.; Boskovic, L.B.; Filipovic, D.S. Wideband Biconical Antenna with Embedded Band-Notch Resonator. IEEE Trans. Antennas Propag. 2024, 72, 2921–2925. [Google Scholar] [CrossRef]
- Sahu, B.; Verma, R.P.; Gupta, A. A Compact Modified Elliptical-Shaped Ultra-wideband Filtering Antenna with Improved Band-Edge Selectivity. IETE J. Res. 2024, 70, 8097–8109. [Google Scholar]
- Patel, A.; Kumar, T.; Parihar, M.S. Highly Selective Ultra-wideband Filtenna with Triple Band Notch and Wide Stop Band Rejection for UWB Communication and Sensing Applications. IETE Tech. Rev. 2025, 42, 80–88. [Google Scholar] [CrossRef]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 240–245. [Google Scholar]
- Balanis, C.A. Antenna Theory Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 167–256. [Google Scholar]
- Boag, A.; Michielssen, E.; Mittra, R. Design of Electrically Loaded Wire Antennas Using Genetic Algorithms. IEEE Trans. Antennas Propag. 1996, 44, 687–695. [Google Scholar] [CrossRef]
- Mittra, R.; Altman, Z.; Boag, A. New Designs of Ultra Wide-band Communication Antennas Using a Genetic Algorithm. IEEE Trans. Antennas Propag. 1997, 45, 1494–1501. [Google Scholar]
- Butler, C.M.; Rogers, S.D.; Martin, A.Q. Design and Realization of GA-optimized Wire Monopole and Matching Network with 201 Bandwidth. IEEE Trans. Antennas Propag. 2003, 51, 493–502. [Google Scholar]
- Levin, B. Wide-Range and Multi-Frequency Antenna; CRC Press: Boca Raton, FL, USA, 2019; pp. 36–62. [Google Scholar]
- Qin, D.; Sun, B.; Zhang, R. VHF/UHF Ultrawideband Slim Monopole Antenna with Parasitic Loadings. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2050–2054. [Google Scholar] [CrossRef]
- Tang, M.-C.; Duan, Y.; Wu, Z.; Zhang, Z.; Yi, D.; Li, M. Omnidirectional-Radiating, Vertically Polarized, Wideband, Electrically Small Filtenna. IEEE Trans. Circuits Syst. II-Express Briefs 2023, 70, 1380–1384. [Google Scholar]
- Michishita, N.; Mizutani, T.; Sato, H.; Koyanagi, Y.; Morishita, H. Increasing bandwidth of orthogonally polarised omnidirectional antenna composed of halo and sleeve antennas. IET Microw. Antennas Propag. 2023, 17, 565–573. [Google Scholar]
- Ta, S.X.; Phung, T.T.; Nguyen, K.K.; Dao-Ngoc, C.; Nguyen-Trong, N. Low-Profile Dual-Polarized Composite Patch-Monopole Antenna with Broadband and Widebeam Characteristics. IEEE Access 2023, 11, 87104–87110. [Google Scholar] [CrossRef]
- Zhu, Y.; Deng, C. Wideband Dual-Polarized Endfire Phased Array Antenna With Small Ground Clearance for 5G mmWave Mobile Terminals. IEEE Trans. Antennas Propag. 2023, 71, 5469–5474. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, Z.; Wang, J. Compact Ultrawideband H-Plane Horn Antenna Inspired by Modified Double-Sleeve Monopole. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2767–2771. [Google Scholar]
- Smith, J.S.; Baginski, M.E. Thin-Wire Antenna Design Using a Novel Branching Scheme and Genetic Algorithm Optimization. IEEE Trans. Antennas Propag. 2019, 67, 2934–2941. [Google Scholar] [CrossRef]
- Xiang, K.-R.; Chen, F.-C.; Tan, Q.; Chu, Q.-X. High-Selectivity Filtering Patch Antennas Based on MultiPath Coupling Structures. IEEE Trans. Microw. Theory Tech. 2021, 69, 2201–2210. [Google Scholar] [CrossRef]
- Hu, H.-T.; Wu, G.-B.; Chan, K.F.; Chan, C.H. V-Band Dual-Polarized Filtering Transmitarray Antenna Enabled by a Planar Filtering Illumination Source. IEEE Trans. Antennas Propag. 2022, 70, 9184–9197. [Google Scholar] [CrossRef]
- Su, H.; Wu, L.L.; Zhang, Y.; Zhang, J.; Xu, H.L.; Zhang, X.Y. Circuit Modeling and Parameter Extracting of a Filtering Series-Fed Antenna. IEEE Trans. Microw. Theory Tech. 2023, 71, 1640–1653. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S.; Xue, Q.; Che, W.; Shen, G.; Feng, W. Novel Filtering Method Based on Metasurface Antenna and Its Application for Wideband High-Gain Filtering Antenna with Low Profile. IEEE Trans. Antennas Propag. 2019, 67, 1535–1544. [Google Scholar] [CrossRef]
- Xun, M.; Yang, W.; Feng, W.; Zhang, Y.; Xue, Q.; Che, W. A Differentially Fed Dual-Polarized Filtering Patch Antenna with Good Stopband Suppression. IEEE Trans. Circuits Syst. II-Express Briefs 2021, 68, 1228–1232. [Google Scholar] [CrossRef]
- Yuan, H.; Chen, F.-C.; Chu, Q.-X. A Wideband and High Gain Dual-Polarized Filtering Antenna Based on Multiple Patches. IEEE Trans. Antennas Propag. 2022, 70, 9843–9848. [Google Scholar] [CrossRef]
- David, M.P. Microwave Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 416–417. [Google Scholar]
- Zhao, J.-Y.; Cao, W.-P.; Lu, L.-C. Design of a Low-cost Broadband Miniaturized Sleeve Loaded Monopole Antenna. In Proceedings of the 2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation, Xiamen, China, 4–7 November 2022; pp. 4–7. [Google Scholar]
- Nguyen, T.H.; Nguyen, N.D.; Takizawa, H.; Morishita, H. A simple printed antenna with broadband property and omnidirectional radiation patterns of wire dipole. IEICE Electron. Express 2020, 17, 20200261. [Google Scholar] [CrossRef]
- Hu, W.; Chen, Z.; Lin, C.; Li, C.; Wen, L.; Jiang, W.; Gao, S. Wideband Horizontally Omnidirectional, Polarization-Reconfigurable, Cylindrical Antenna Based on Combined Common and Differential Modes. IEEE Trans. Antennas Propag. 2025, 73, 600–605. [Google Scholar]
- Zhang, Z.-Y.; Ding, C.F.; Zeng, Y.; Su, H.; Zhou, T.; Zhang, X.Y.; Yu, M. Circuit Model for Nth-Order Filtering Wire Antenna Parameter Extraction and Radiation Prediction. IEEE Trans. Antennas Propag. 2023, 71, 3945–3957. [Google Scholar] [CrossRef]
Load Position (mm) | Resistance (ohm) | Inductance (nH) | Capacitance (pF) |
---|---|---|---|
178 | 100 | 25 | 3 |
225 | 1600 | 8.5 | 1 |
265 | 200 | 10 | 1.2 |
Ref. | Electrical Length (λmax) 1 | Bandwidth (MHz) | Gain (dB) | Filtering Character |
---|---|---|---|---|
[34] | 0.18 | 100–550 | −4 | No |
[29] | 1.8 | 5835–6100 | 5.5 | Yes |
[4] | 0.3 | 900–5200 | 0.8 | No |
[36] | 0.68 | 2500–3500 | 2.5 | Yes |
[35] | 0.32 | 700–1700 | 0 | No |
[37] | 0.25 | 3600–4600 | 5 | Yes |
This work | 0.2 | 200–1500 | 0 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Cao, W.; Yu, X. Design of a Wideband Loaded Sleeve Monopole Embedded with Filtering High–Low Impedance Structure. Electronics 2025, 14, 3137. https://doi.org/10.3390/electronics14153137
Ma J, Cao W, Yu X. Design of a Wideband Loaded Sleeve Monopole Embedded with Filtering High–Low Impedance Structure. Electronics. 2025; 14(15):3137. https://doi.org/10.3390/electronics14153137
Chicago/Turabian StyleMa, Jiansen, Weiping Cao, and Xinhua Yu. 2025. "Design of a Wideband Loaded Sleeve Monopole Embedded with Filtering High–Low Impedance Structure" Electronics 14, no. 15: 3137. https://doi.org/10.3390/electronics14153137
APA StyleMa, J., Cao, W., & Yu, X. (2025). Design of a Wideband Loaded Sleeve Monopole Embedded with Filtering High–Low Impedance Structure. Electronics, 14(15), 3137. https://doi.org/10.3390/electronics14153137