Calculation of the Transmitted Electromagnetic Field Below a Flat Interface Between Lossless Media in the Far-Field Region Using a Geometrical Optics Approach
Abstract
1. Introduction
2. Refraction from a Flat Interface
2.1. Coordinates of the Imaginary Source
2.2. The IS Field in an Infinite Space
3. Actual Calculation of the Transmitted EM Field Below the Flat Interface
4. Discussion
5. Conclusions
- The problem of spherical wave scattering at a smooth boundary between two media, taking into account the curvature;
- Sommerfeld’s problem of radiation from a horizontal dipole [12].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EM | Electromagnetic. |
VHD | Vertical Hertzian dipole. |
IS | Imaginary source. |
ISM | Image Source Method. |
Appendix A. Calculating IS Coordinates
Appendix B. Formulae for the Calculation of the Far EM Field from Vertical Hertzian Dipole in Free Space
Appendix C. Sommerfeld Integral Evaluation
References
- Michalski, K.A.; Mosig, J.R. The Sommerfeld Halfspace Problem Redux: Alternative Field Representations, Role of Zenneck and Surface Plasmon Waves. IEEE Trans. Antennas Propag. 2015, 63, 5777–5790. [Google Scholar] [CrossRef]
- Sautbekov, S.; Bourgiotis, S.; Chrysostomou, A.; Frangos, P. A novel asymptotic solution to the Sommerfeld radiation problem: Analytic field expressions and the emergence of the surface waves. Prog. Electromagn. Res. M 2018, 64, 9–22. [Google Scholar] [CrossRef]
- Brekhovskikh, L.M.; Godin, O.A. Reflection and Refraction of Spherical Waves. In Acoustics of Layered Media II: Point Sources and Bounded Beams; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–40. [Google Scholar] [CrossRef]
- Deschamps, G. Ray techniques in electromagnetics. Proc. IEEE 1972, 60, 1022–1035. [Google Scholar] [CrossRef]
- Keller, J. One hundred years of diffraction theory. IEEE Trans. Antennas Propag. 1985, 33, 123–126. [Google Scholar] [CrossRef]
- Ott, H. Reflexion und brechung von kugelwellen; effekte 2. ordnung. Ann. Der Phys. 1942, 433, 443–466. [Google Scholar] [CrossRef]
- Krüger, M. Die Theorie der in endlicher Entfernung von der Trennungsebene zweier Medien erregten Kugelwelle für endliche Brechungsindizes. Z. Phys. 1943, 121, 377–437. [Google Scholar] [CrossRef]
- Gerjuoy, E. Refraction of waves from a point source into a medium of higher velocity. Phys. Rev. 1948, 73, 1442. [Google Scholar] [CrossRef]
- Sommerfeld, A.N. Propagation of Waves in Wireless Telegraphy. Ann. Der Phys. 1909, 28, 665–737. [Google Scholar] [CrossRef]
- Sommerfeld, A.N. Propagation of Waves in Wireless Telegraphy. Ann. Der Phys. 1926, 81, 1135–1153. [Google Scholar] [CrossRef]
- Sautbekov, S.; Sautbekova, M.; Baisalova, K.; Pshikov, M. Calculation of Sommerfeld Integrals in Dipole Radiation Problems. Mathematics 2024, 12, 298. [Google Scholar] [CrossRef]
- Hu, S.; Xie, H.; Li, Z. Evaluation of Electromagnetic Fields of Extremely Low-Frequency Horizontal Electric Dipoles at Sea-Air Boundaries. Electronics 2023, 12, 4165. [Google Scholar] [CrossRef]
- Wen, Z.; Luo, J.; Li, W. Green Functions of Multi-Layered Plane Media with Arbitrary Boundary Conditions and Its Application on the Analysis of the Meander Line Slow-Wave Structure. Electronics 2021, 10, 2716. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Wu, B.Y.; Li, Z.L.; Yang, M.L.; Sheng, X.Q. An Adaptive Rational Fitting Technique of Sommerfeld Integrals for the Efficient MoM Analysis of Planar Structures. Electronics 2022, 11, 3940. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sautbekov, S.; Sautbekova, M.; Frangos, P.; Massinas, B.; Bourgiotis, S. Calculation of the Transmitted Electromagnetic Field Below a Flat Interface Between Lossless Media in the Far-Field Region Using a Geometrical Optics Approach. Electronics 2025, 14, 2821. https://doi.org/10.3390/electronics14142821
Sautbekov S, Sautbekova M, Frangos P, Massinas B, Bourgiotis S. Calculation of the Transmitted Electromagnetic Field Below a Flat Interface Between Lossless Media in the Far-Field Region Using a Geometrical Optics Approach. Electronics. 2025; 14(14):2821. https://doi.org/10.3390/electronics14142821
Chicago/Turabian StyleSautbekov, Seil, Merey Sautbekova, Panayiotis Frangos, Basil Massinas, and Sotiris Bourgiotis. 2025. "Calculation of the Transmitted Electromagnetic Field Below a Flat Interface Between Lossless Media in the Far-Field Region Using a Geometrical Optics Approach" Electronics 14, no. 14: 2821. https://doi.org/10.3390/electronics14142821
APA StyleSautbekov, S., Sautbekova, M., Frangos, P., Massinas, B., & Bourgiotis, S. (2025). Calculation of the Transmitted Electromagnetic Field Below a Flat Interface Between Lossless Media in the Far-Field Region Using a Geometrical Optics Approach. Electronics, 14(14), 2821. https://doi.org/10.3390/electronics14142821