The Evolution of Squeezing in Coupled Macroscopic Mechanical Oscillator Systems
Abstract
1. Introduction
2. The Models
3. Results
4. Discussion and Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, X.; Viennot, J.J.; Kotler, S.; Teufel, J.D.; Lehnert, K.W. Non-classical energy squeezing of a macroscopic mechanical oscillator. Nat. Phys. 2021, 17, 322–326. [Google Scholar] [CrossRef]
- Marti, S.; von Lüpke, U.; Joshi, O.; Bild, M.; Omahen, A.; Chu, Y.; Fadel, M. Quantum squeezing in a nonlinear mechanical oscillator. Nat. Phys. 2024, 20, 1448–1453. [Google Scholar] [CrossRef]
- Wang, H.; Qin, J.; Chen, S.; Chen, M.-C.; You, X.; Ding, X.; Huo, Y.-H.; Yu, Y.; Schneider, C.; Höfling, S.; et al. Observation of intensity squeezing in resonance fluorescence from a solid-state device. Phys. Rev. Lett. 2020, 125, 153601. [Google Scholar] [CrossRef]
- Asjad, M.; Agarwal, G.S.; Kim, M.S.; Tombesi, P.; Giuseppe, G.D.; Vitali, D. Robust stationary mechanical squeezing in a kicked quadratic optomechanical system. Phys. Rev. A 2014, 89, 023849. [Google Scholar] [CrossRef]
- Chabar, N.; Amghar, M.B.; Amazioug, M.; Nassik, M. Enhancement of mirror–mirror entanglement with intracavity squeezed light and squeezed-vacuum injection. Eur. Phys. J. 2024, 78, 33. [Google Scholar] [CrossRef]
- Chiorescu, I.; Bertet, P.; Semba, K.; Nakamura, Y.; Harmans, C.J.P.M.; Mooij, J.E. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 2004, 431, 159–162. [Google Scholar] [CrossRef]
- Steffen, M.; Ansmann, M.; Bialczak, R.C.; Katz, N.; Lucero, E.; McDermott, R.; Neeley, M.; Weig, E.M.; Cleland, A.N.; Martinis, J.M. Measurement of the Entanglement of Two Superconducting Qubits via State Tomography. Science 2006, 313, 1423–1425. [Google Scholar] [CrossRef]
- Kuzyk, M.C.; Wang, H. Scaling phononic quantum networks of solid-state spins with closed mechanical subsystems. Phys. Rev. X 2018, 8, 041027. [Google Scholar] [CrossRef]
- Pompili, M.; Hermans, S.L.N.; Baier, S.; Beukers, H.K.C.; Humphreys, P.C.; Schouten, R.N.; Vermeulen, R.F.L.; Tiggelman, M.J.; Martins, L.D.S.; Dirkse, B.; et al. Realization of a multinode quantum network of remote solid-state qubits. Science 2021, 372, 259–264. [Google Scholar] [CrossRef]
- Schmidt-Kaler, F.; Häffner, H.; Riebe, M.; Gulde, S.; Lancaster, G.P.T.; Deuschle, T.; Becher, C.; Roos, C.F.; Eschner, J.; Blatt, R. Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 2003, 422, 408–411. [Google Scholar] [CrossRef]
- Schäfer, V.M.; Ballance, C.J.; Thirumalai, K.; Stephenson, L.J.; Ballance, T.G.; Steane, A.M.; Lucas, D.M. Fast quantum logic gates with trapped-ion qubits. Nature 2018, 555, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Wu, Y.W.; Steel, D.; Gammon, D.; Stievater, T.H.; Katzer, D.S.; Park, D.; Piermarocchi, C.; Sham, L.J. An all-optical quantum gate in a semiconductor quantum dot. Science 2003, 301, 809–811. [Google Scholar] [CrossRef] [PubMed]
- Tanttu, T.; Lim, W.H.; Huang, J.Y.; Stuyck, N.D.; Gilbert, W.; Su, R.Y.; Feng, M.; Cifuentes, J.D.; Seedhouse, A.E.; Seritan, S.K.; et al. Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots. Nat. Phys. 2024, 20, 1804–1809. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, A.N.; Chen, Y.A.; Zhang, H.; Du, J.F.; Yang, T.; Pan, J.W. Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits. Phys. Rev. Lett. 2005, 94, 030501. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, L.; Li, M.; Chen, Y.; Zhang, L.; He, D.; Guo, G.; Guo, G.; Ren, X.; Dai, D. Supercompact photonic quantum logic gate on a silicon chip. Phys. Rev. Lett. 2021, 126, 130501. [Google Scholar] [CrossRef]
- Gao, W.C.; Zheng, C.; Liu, L.; Wang, T.J.; Wang, C. Experimental simulation of the parity-time symmetric dynamics using photonic qubits. Opt. Express 2020, 29, 517–526. [Google Scholar] [CrossRef]
- Amazioug, M.; Maroufi, B.; Daoud, M. Enhancement of photon–phonon entanglement transfer in optomechanics. Quantum Inf. Process. 2020, 19, 160. [Google Scholar] [CrossRef]
- Noura, C.; M’bark, A.; Mohamed, A. Enhanced Gaussian interferometric power, entanglement and Gaussian quantum steering in magnonics system with squeezed light. Phys. Lett. A 2024, 519, 129712. [Google Scholar] [CrossRef]
- Amazioug, M.; Maroufi, B.; Daoud, M. Creating mirror–mirror quantum correlations in optomechanics. Eur. Phys. J. D 2020, 74, 54. [Google Scholar] [CrossRef]
- Amazioug, M.; Nassik, M.; Habiballah, N. Entanglement, EPR steering and Gaussian geometric discord in a double cavity optomechanical systems. Eur. Phys. J. D 2018, 72, 171. [Google Scholar] [CrossRef]
- Dayan, B.; Parkins, A.S.; Aoki, T.; Ostby, E.P.; Vahala, K.I.; Kimble, H.J. A photon turnstile dynamically regulated by one atom. Science 2008, 319, 1062–1065. [Google Scholar] [CrossRef] [PubMed]
- Wolters, J.; Schell, A.W.; Kewes, G.; Nüsse, N.; Schoengen, M.; Döscher, H.; Hannappel, T.; Löchel, B.; Barth, M.; Benson, O. Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 2010, 97, 141108. [Google Scholar] [CrossRef]
- Smith, J.A.; Clear, C.; Balram, K.C.; McCutcheon, D.P.; Rarity, J.G. Nitrogen-vacancy center coupled to an ultrasmall-mode-volume cavity: A high-efficiency source of indistinguishable photons at 200 K. Phys. Rev. Appl. 2021, 15, 034029. [Google Scholar] [CrossRef]
- Buckley, B.B.; Fuchs, G.D.; Bassett, L.C.; Awschalom, D.D. Spin-light coherence for single-spin measurement and control in diamond. Science 2010, 330, 1212–1215. [Google Scholar] [CrossRef]
- Maffei, M.; Goes, B.O.; Wein, S.C.; Jordan, A.N.; Lanco, L.; Auffèves, A. Energy-efficient quantum non-demolition measurement with a spin-photon interface. Quantum 2023, 7, 1099. [Google Scholar] [CrossRef]
- Hammerer, K.; Wallquist, M.; Genes, C.; Ludwig, M.; Marquardt, F.; Treutlein, P.; Zoller, P.; Ye, J.; Kimble, H.J. Strong coupling of a mechanical oscillator and a single atom. Phys. Rev. Lett. 2009, 103, 063005. [Google Scholar] [CrossRef]
- Bhattacherjee, A.B. Cavity quantum optomechanics of ultracold atoms in an optical lattice: Normal-mode splitting. Phys. Rev. A 2009, 80, 043607. [Google Scholar] [CrossRef]
- Ian, H.; Gong, Z.R.; Liu, Y.; Sun, C.P.; Nori, F. Cavity optomechanical coupling assisted by an atomic gas. Phys. Rev. A 2008, 78, 013824. [Google Scholar] [CrossRef]
- Li, B.B.; Ou, L.; Lei, Y.; Liu, Y.C. Cavity optomechanical sensing. Nanophotonics 2021, 10, 2799–2832. [Google Scholar] [CrossRef]
- Mercadé, L.; Pelka, K.; Burgwal, R.; Xuereb, A.; Martínez, A.; Verhagen, E. Floquet phonon lasing in multimode optomechanical systems. Phys. Rev. Lett. 2021, 127, 073601. [Google Scholar] [CrossRef]
- Bariani, F.; Otterbach, J.; Tan, H.; Meystre, P. Single-atom quantum control of macroscopic mechanical oscillators. Phys. Rev. A 2014, 89, 011901. [Google Scholar] [CrossRef]
- Blais, A.; Grimsmo, A.L.; Girvin, S.M.; Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 2021, 93, 025005. [Google Scholar] [CrossRef]
- Huo, W.Y.; Long, G.L. Generation of squeezed states of nanomechanical resonator using three-wave mixing. Appl. Phys. Lett. 2008, 92, 133102. [Google Scholar] [CrossRef]
- Ma, W.L.; Puri, S.; Schoelkopf, R.J.; Devoret, M.H.; Girvin, S.M.; Jiang, L. Quantum control of bosonic modes with superconducting circuits. Sci. Bull. 2021, 66, 1789–1805. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Sun, C.P.; Nori, F. Quantum spin squeezing. Phys. Rep. 2011, 509, 89–165. [Google Scholar] [CrossRef]
- Liu, R.; An, J.H. Quantum squeezed-reservoir engineering in Laguerre-Gaussian cavity optomechanics. Phys. Rev. A 2025, 111, 043718. [Google Scholar] [CrossRef]
- Li, G.; Yin, Z.Q. Squeezing light via levitated cavity optomechanics. Photonics 2022, 9, 57. [Google Scholar] [CrossRef]
- Tang, L.; Tang, J.; Chen, M.; Nori, F.; Xiao, M.; Xia, K. Quantum squeezing induced optical nonreciprocity. Phys. Rev. Lett. 2022, 128, 083604. [Google Scholar] [CrossRef]
- Lu, B.; Liu, L.; Song, J.Y.; Wen, K.; Wang, C. Recent progress on coherent computation based on quantum squeezing. AAPPS Bull. 2023, 33, 7. [Google Scholar] [CrossRef]
- Pritchard, J.D.; Gauguet, A.; Weatherill, K.J.; Adams, C.S. Optical non-linearity in a dynamical Rydberg gas. J. Phys. B 2011, 44, 184019. [Google Scholar] [CrossRef]
- Wodkiewicz, K.; Zubairy, M.S. Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier. Phys. Rev. A 1983, 27, 2003–2007. [Google Scholar] [CrossRef]
- Wodkiewicz, K.; Zubairy, M.S. Gaussian stochastic processes in physics. Phys. Rep. 1978, 48, 179–283. [Google Scholar]
- Ovartchaiyapong, P.; Lee, K.W.; Myers, B.A.; Jayich, A.C.B. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 2014, 5, 4429. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.-C.; Shi, X.-D.; Zhang, X.-L.; Chen, L.-X.; Zhang, Y. The Evolution of Squeezing in Coupled Macroscopic Mechanical Oscillator Systems. Electronics 2025, 14, 2817. https://doi.org/10.3390/electronics14142817
Liu X-C, Shi X-D, Zhang X-L, Chen L-X, Zhang Y. The Evolution of Squeezing in Coupled Macroscopic Mechanical Oscillator Systems. Electronics. 2025; 14(14):2817. https://doi.org/10.3390/electronics14142817
Chicago/Turabian StyleLiu, Xin-Chang, Xiao-Dong Shi, Xiao-Lei Zhang, Ling-Xiao Chen, and Yi Zhang. 2025. "The Evolution of Squeezing in Coupled Macroscopic Mechanical Oscillator Systems" Electronics 14, no. 14: 2817. https://doi.org/10.3390/electronics14142817
APA StyleLiu, X.-C., Shi, X.-D., Zhang, X.-L., Chen, L.-X., & Zhang, Y. (2025). The Evolution of Squeezing in Coupled Macroscopic Mechanical Oscillator Systems. Electronics, 14(14), 2817. https://doi.org/10.3390/electronics14142817