BSCNNLaneNet: A Novel Bidirectional Spatial Convolution Neural Network for Lane Detection
Abstract
1. Introduction
- (1)
- Based on the spatial CNN method, the proposed network model introduces the bidirectional recurrent neural network (BRNN) to effectively learn spatial relationships among slice features.
- (2)
- In addition, our method utilizes the convolutional block attention module to refine the slice features’ output by the BRNN, which can strengthen the global relationships between the features in different directions.
2. Related Work
3. Method
3.1. BRNN-Based Serialized Feature Learning Method
3.2. CBAM-Based Feature Association Method
3.3. Loss Function
4. Experiments and Results
4.1. Datasets
4.2. Evaluation Metric
4.3. Implementation Details
4.3.1. Experiment Settings
4.3.2. Data Preprocessing
- (1)
- Assign a grayscale image with one channel as the label for the TuSimple dataset. The grayscale value of the label corresponds to the sequence number of the lane line from left to right, with 1, 2, 3, and 4 representing the lane lines, respectively.
- (2)
- Due to the uppermost portion of the picture mostly consisting of buildings, trees, sky, and other non-lane line elements, this area should be removed, leaving only the lane line area covering the entirety of the remaining picture. This process reduces the image size and the computation cost. All the input images are resized to 320 × 800. This can lead to faster training times and lower computational resource requirements.
- (3)
- Data augmentation is applied to the training phase, including random scaling and random rotation.
4.4. Main Results
4.5. Ablation Study
4.6. Cross-Dataset Generalization Evaluation
4.7. Study on Training Dynamics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Zheng, W.; Zhang, Y.; Zhou, J.; Lu, J. StructLane: Leveraging Structural Relations for Lane Detection. IEEE Trans. Image Process. 2024, 33, 3692–3706. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Guo, S.; Tan, X.; Xu, K.; Wang, M.; Ma, L. Rethinking efficient lane detection via curve modeling. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17062–17070. [Google Scholar]
- Liu, B.; Feng, L.; Zhao, Q.; Li, G.; Chen, Y. Improving the Accuracy of Lane Detection by Enhancing the Long-Range Dependence. Electronics 2023, 12, 2518. [Google Scholar] [CrossRef]
- Xie, J.; Han, J.; Qi, D.; Chen, F.; Huang, K.; Shuai, J. Lane detection with position embedding. In Proceedings of the Fourteenth International Conference on Digital Image Processing (ICDIP 2022), Wuhan, China, 20–23 May 2022; Volume 12342, pp. 78–86. [Google Scholar]
- Deng, L.; Liu, X.; Jiang, M.; Li, Z.; Ma, J.; Li, H. Lane Detection Based on Adaptive Cross-Scale Region of Interest Fusion. Electronics 2023, 12, 4911. [Google Scholar] [CrossRef]
- Pan, X.; Shi, J.; Luo, P.; Wang, X.; Tang, X. Spatial as deep: Spatial cnn for traffic scene understanding. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Narote, S.P.; Bhujbal, P.N.; Narote, A.S.; Dhane, D.M. A review of recent advances in lane detection and departure warning system. Pattern Recognit. 2018, 73, 216–234. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Huang, S.; Hui, T.; Wang, F.; Qian, C.; Zhang, T. A keypoint-based global association network for lane detection. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 1392–1401. [Google Scholar]
- Zou, Q.; Jiang, H.; Dai, Q.; Yue, Y.; Chen, L.; Wang, Q. Robust lane detection from continuous driving scenes using deep neural networks. IEEE Trans. Veh. Technol. 2019, 69, 41–54. [Google Scholar] [CrossRef]
- Qu, Z.; Jin, H.; Zhou, Y.; Yang, Z.; Zhang, W. Focus on local: Detecting lane marker from bottom up via key point. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 14122–14130. [Google Scholar]
- Yoo, S.; Lee, H.S.; Myeong, H.; Yun, S.; Park, H.; Cho, J.; Kim, D.H. End-to-end lane marker detection via row-wise classification. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 1006–1007. [Google Scholar]
- Hou, Y.; Ma, Z.; Liu, C.; Loy, C.C. Learning lightweight lane detection cnns by self attention distillation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1013–1021. [Google Scholar]
- Li, X.; Li, J.; Hu, X.; Yang, J. Line-cnn: End-to-end traffic line detection with line proposal unit. IEEE Trans. Intell. Transp. Syst. 2019, 21, 248–258. [Google Scholar] [CrossRef]
- Li, C.; Zhang, B.; Shi, J.; Cheng, G. Multi-level domain adaptation for lane detection. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 4380–4389. [Google Scholar]
- Zheng, T.; Fang, H.; Zhang, Y.; Tang, W.; Yang, Z.; Liu, H.; Cai, D. Resa: Recurrent feature-shift aggregator for lane detection. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; Volume 35, pp. 3547–3554. [Google Scholar]
- Qiu, Q.; Gao, H.; Hua, W.; Huang, G.; He, X. Priorlane: A prior knowledge enhanced lane detection approach based on transformer. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 5618–5624. [Google Scholar]
- Qin, Z.; Wang, H.; Li, X. Ultra fast structure-aware deep lane detection. In Computer Vision–ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXIV 16; Springer International Publishing: Cham, Switzerland, 2020; pp. 276–291. [Google Scholar]
- Tabelini, L.; Berriel, R.; Paixao, T.M.; Badue, C.; De Souza, A.F.; Oliveira-Santos, T. Keep your eyes on the lane: Real-time attention-guided lane detection. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 294–302. [Google Scholar]
- Zheng, T.; Huang, Y.; Liu, Y.; Tang, W.; Yang, Z.; Cai, D.; He, X. CLRNET: Cross layer refinement network for lane detection. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 898–907. [Google Scholar]
- Su, J.; Chen, C.; Zhang, K.; Luo, J.; Wei, X.; Wei, X. Structure Guided Lane Detection. arXiv 2021, arXiv:2105.05403. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, Y.; Lu, J.; Li, Z.; Li, S.; Wang, S.; Liu, W.; Wang, L.; Li, J. Oblique Convolution: A Novel Convolution Idea for Redefining Lane Detection. IEEE Trans. Intell. Veh. 2023, 9, 4025–4039. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Wu, C.; Zhang, T.; Liu, Y. ECPNet: An Enhanced Curve Perception Network for Lane Detection. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 7380–7384. [Google Scholar]
- Van Gansbeke, W.; De Brabandere, B.; Neven, D.; Proesmans, M.; Van Gool, L. End-to-end lane detection through differentiable least-squares fitting. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Tabelini, L.; Berriel, R.; Paixao, T.M.; Badue, C.; De Souza, A.F.; Oliveira-Santos, T. Polylanenet: Lane estimation via deep polynomial regression. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 6150–6156. [Google Scholar]
- Han, W.; Shen, J. Decoupling the Curve Modeling and Pavement Regression for Lane Detection. arXiv 2023, arXiv:2309.10533. [Google Scholar]
- Liu, R.; Yuan, Z.; Liu, T.; Xiong, Z. End-to-end lane shape prediction with transformers. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV 2021), Online, 5–9 January 2021; pp. 3694–3702. [Google Scholar]
- Rassabin, M.; Yagfarov, R.; Gafurov, S. Approaches for Road Lane Detection. In Proceedings of the 2019 3rd School on Dynamics of Complex Networks and their Application in Intellectual Robotics, Innopolis, Russia, 9–11 September 2019. [Google Scholar]
- Satzoda, R.K.; Sathyanarayana, S.; Srikanthan, T. Hierarchical additive Hough transform for lane detection. IEEE Embed. Syst. Lett. 2010, 2, 23–26. [Google Scholar] [CrossRef]
- Abegaz, B.W.; Shah, N. Sensors based Lane Keeping and Cruise Control of Self Driving Vehicles. In Proceedings of the 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York City, NY, USA, 28–31 October 2020; pp. 0486–0491. [Google Scholar]
- Gong, Y.; Jiang, X.; Wang, L.; Xu, L.; Lu, J.; Liu, H.; Lin, L.; Zhang, X. TCLaneNet: Task-Conditioned Lane Detection Network Driven by Vibration Information. IEEE Trans. Intell. Veh. 2024, 1–14. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, Y.; Li, Z.; Liu, X.; Pan, S.; Li, J. Multi-modal attention guided real-time lane detection. In Proceedings of the 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), Chongqing, China, 3–5 July 2021; pp. 146–153. [Google Scholar]
- Liu, P.; Yang, M.; Wang, C.; Wang, B. Multi-lane detection via multi-task network in various road scenes. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 2750–2755. [Google Scholar]
- Ling, J.; Chen, Y.; Cheng, Q.; Huang, X. Zigzag Attention: A Structural Aware Module For Lane Detection. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 4175–4179. [Google Scholar]
- TuSimple: TuSimple Benchmark. Available online: https://www.kaggle.com/datasets/manideep1108/tusimple?resource=download (accessed on 1 March 2024).
Hyperparameter | Specific Settings |
---|---|
Image Scaling Size | 320 × 800 |
Batch Size | 5 |
Optimizer | Adam |
Momentum Parameter | 0.9 |
Weight Decay | 5 × 10−4 |
Base Learning Rate | 0.01 |
Learning Strategy | Poly (power = 0.9) |
Method | Backbone | ACC | F1@50 | FP | FN | FPS |
---|---|---|---|---|---|---|
APE [4] | ResNet34 | 96.93 | - | - | - | 35 |
SCNN [6] | VGG16 | 96.53 | 95.97 | 6.17 | 1.80 | 7.5 |
FOLOLane [11] | ERFNet | 96.92 | - | 4.47 | 2.28 | 100 |
CLRNet [20] | ResNet18 | 96.84 | 97.89 | 2.28 | 1.92 | 119 |
CLRNet [20] | ResNet34 | 96.87 | 97.82 | 2.27 | 2.08 | 103 |
CLRNet [20] | ResNet101 | 96.83 | 97.62 | 2.37 | 2.38 | 46 |
LaneATT [19] | ResNet18 | 95.57 | 96.71 | 3.56 | 3.01 | 250 |
LanetATT [19] | ResNet34 | 95.63 | 96.77 | 3.53 | 2.92 | 171 |
LaneATT [19] | ResNet101 | 96.10 | 96.06 | 5.64 | 2.17 | 26 |
UFLD [18] | ResNet34 | 95.86 | 88.02 | 18.91 | 3.75 | 300 |
RESA [16] | ResNet18 | 96.70 | - | 3.95 | 2.83 | - |
RESA [16] | ResNet34 | 96.82 | - | 3.63 | 2.48 | 35 |
LSTR [27] | ResNet18 | 96.18 | 96.86 | 2.91 | 3.38 | 420 |
Ours | ResNet18 | 96.73 | 96.21 | 2.93 | 2.62 | 188 |
Ours | RestNet34 | 96.86 | 96.87 | 2.26 | 1.99 | 176 |
Ours | RestNet101 | 96.83 | 96.72 | 2.51 | 2.01 | 153 |
Method | ResNet18 | ResNet34 | ResNet101 |
---|---|---|---|
SCNN | 96.57 | 96.62 | 96.66 |
SCNN+RNN | 96.59 | 96.65 | 96.70 |
SCNN+CAM | 96.62 | 96.66 | 96.68 |
BSCNNLaneNet | 96.73 | 96.86 | 96.83 |
Method | Backbone | ACC | FP | FN |
---|---|---|---|---|
SCNN [6] | VGG16 | 5.33 | 95.73 | 97.02 |
UFLD [18] | RestNet34 | 30.07 | 56.73 | 66.47 |
LaneATT [19] | RestNet34 | 28.89 | 55.42 | 58.86 |
CLRNet [20] | RestNet34 | 30.66 | 52.58 | 55.89 |
Ours | RestNet34 | 35.32 | 50.33 | 48.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Y.; Ji, Z.; Zhang, M.; Li, X.; Wang, G.; Wang, L. BSCNNLaneNet: A Novel Bidirectional Spatial Convolution Neural Network for Lane Detection. Electronics 2025, 14, 2604. https://doi.org/10.3390/electronics14132604
Ge Y, Ji Z, Zhang M, Li X, Wang G, Wang L. BSCNNLaneNet: A Novel Bidirectional Spatial Convolution Neural Network for Lane Detection. Electronics. 2025; 14(13):2604. https://doi.org/10.3390/electronics14132604
Chicago/Turabian StyleGe, Youming, Zhihang Ji, Moli Zhang, Xiang Li, Guoyong Wang, and Lin Wang. 2025. "BSCNNLaneNet: A Novel Bidirectional Spatial Convolution Neural Network for Lane Detection" Electronics 14, no. 13: 2604. https://doi.org/10.3390/electronics14132604
APA StyleGe, Y., Ji, Z., Zhang, M., Li, X., Wang, G., & Wang, L. (2025). BSCNNLaneNet: A Novel Bidirectional Spatial Convolution Neural Network for Lane Detection. Electronics, 14(13), 2604. https://doi.org/10.3390/electronics14132604