Performance-Enhanced Double Serpentine Minichannel Heat Sink for Phased-Array Radar High-Heat-Flux Chip Cooling
Abstract
1. Introduction
2. Problem Descriptions and Data Acquisition Methods
2.1. Design of Minichannel Heat Sink
2.2. Data Acquisition Methods
3. Numerical Methods and Validations
3.1. Numerical Methods
3.2. Boundary Conditions and Thermo-Physical Properties
3.3. Validations of Grid Sensitivity
3.4. Validations Against Previous Studies
4. Results and Discussions
4.1. Effects of Volumetric Flow Rates
4.2. Effects of Rib Oblique Angle
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MCHS | Minichannel heat sink |
MMCHS | Modified manifold microchannel heat sink |
DSMPF | Double serpentine minichannel with plate fins |
DSMTF | Double serpentine minichannel with chevron fins and triangular ribs |
VLSI | Very-large-scale integration |
CFD | Computational fluid dynamics |
References
- Hussam, S.; Qasim, M.; Samsher. Heat transfer augmentation in microchannel heat sink using secondary flows: A review. Int. J. Heat Mass Transf. 2022, 194, 123063. [Google Scholar]
- Ahmed, F.A.-N. Serpentine minichannel liquid-cooled heat sinks for electronics cooling applications. Ph.D. Thesis, University of Leeds, Leeds, UK, 2018. [Google Scholar]
- Tuckerman, D.B.; Pease, R.F.W. High-Performance Heat Sinking for VLSI. IEEE Electron Device Lett. 1981, 2, 126–129. [Google Scholar] [CrossRef]
- Wei, T.W. High Efficiency Polymer based Direct Multi-jet Impingement Cooling Solution for High Power Devices. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2020. [Google Scholar]
- Ghani, I.A.; Sidik, N.A.C.; Kamaruzaman, N. Hydrothermal performance of microchannel heat sink: The effect of channel design. Int. J. Heat Mass Trans. 2017, 107, 21–44. [Google Scholar] [CrossRef]
- Liu, X.Q.; Yu, J.L. Numerical study on performances of mini-channel heat sinks with non-uniform inlets. Appl. Therm. Eng. 2016, 93, 856–864. [Google Scholar] [CrossRef]
- Saeed, M.; Kim, M.-H. Header design approaches for mini-channel heatsinks using analytical and numerical methods. Appl. Therm. Eng. 2017, 110, 1500–1510. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.W.; Lew, J.V. CFD study on flow distribution uniformity in fuel distributors having multiple structural bifurcations of flow channels. Int. J. Hydrogen Energy 2010, 35, 9186–9198. [Google Scholar] [CrossRef]
- Ramos-Alvarado, B.; Li, P.W.; Liu, H.; Hernandez-Guerrero, A. CFD study of liquid–cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells. Appl. Therm. Eng. 2011, 31, 2494–2507. [Google Scholar] [CrossRef]
- Vinodhan, V.L.; Rajan, K.S. Computational analysis of new microchannel heat sink configurations. Energy Convers. Manag. 2014, 86, 595–604. [Google Scholar] [CrossRef]
- Cao, X.; Liu, H.L.; Shao, X.D.; Shen, H.; Xie, G.N. Thermal performance of double serpentine minichannel heat sinks: Effects of inlet-outlet arrangements and through-holes. Int. J. Heat Mass Transf. 2020, 153, 119575. [Google Scholar] [CrossRef]
- Fedorov, A.G.; Viskanta, R. Three-dimensional conjugate heat transfer in the micro-channel heat sink for electronic packaging. Int. J. Heat Mass Transf. 2000, 43, 399–415. [Google Scholar] [CrossRef]
- Qu, W.L.; Mudawar, I. Analysis of three-dimensional heat transfer in microchannel heat sinks. Int. J. Heat Mass Transf. 2002, 45, 3973–3985. [Google Scholar] [CrossRef]
- Li, J.; Peterson, G.P.; Cheng, P. Three-dimensional analysis of the heat transfer in a micro-heat sink with single phase flow. Int. J. Heat Mass Transf. 2004, 47, 4215–4231. [Google Scholar] [CrossRef]
- Esmaili, Q.; Ranjbar, A.A.; Porkhial, S. Experimental analysis of heat transfer in ribbed microchannel. Int. J. Therm. Sci. 2018, 130, 140–147. [Google Scholar] [CrossRef]
- Khan, J.A.; Morshed, M.A.; Fang, R.X. Towards ultra-compact high heat flux microchannel heat sink. Procedia Eng. 2014, 90, 11–24. [Google Scholar] [CrossRef]
- Li, S.N.; Zhang, H.N.; Cheng, J.P.; Li, X.B.; Cai, W.H.; Li, Z.Y. A state-of-the-art overview on the developing trend of heat transfer enhancement by single-phase flow at micro scale. Int. J. Heat Mass Transf. 2019, 143, 118476. [Google Scholar] [CrossRef]
- Rehman, M.M.U.; Cheema, T.A.; Ahmad, F.; Abbas, A.; Malik, M.S. Numerical investigation of heat transfer enhancement and fluid flow characteristics in a microchannel heat sink with different wall/design configurations of protrusions/dimples. Heat Mass Transf. 2020, 56, 239–255. [Google Scholar] [CrossRef]
- Kandlikar, S.G. History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: A critical review. J. Heat Transf. 2012, 134, 034001. [Google Scholar] [CrossRef]
- Shen, Y.T.; Pan, Y.H.; Chen, H.; Cheng, W.L. Experimental study of embedded manifold staggered pin-fin microchannel heat sink. Int. J. Heat Mass Transf. 2024, 226, 125488. [Google Scholar] [CrossRef]
- Pu, X.J.; Zhao, Z.C.; Sun, M.K.; Huang, Y.Q. Numerical study on temperature distribution uniformity and cooling performance of manifold microchannel heat sink. Appl. Therm. Eng. 2024, 237, 121779. [Google Scholar] [CrossRef]
- Tao, W.Q.; He, Y.L.; Wang, Q.W.; Qu, Z.G.; Song, F.Q. A unified analysis on enhancing single phase convective heat transfer with field synergy principle. Int. J. Heat Mass Transf. 2002, 45, 4871–4879. [Google Scholar] [CrossRef]
- Suga, K.; Aoki, H. Numerical Study on Heat Transfer and Pressure Drop in Multilouvered Fins. J. Enhanc. Heat Transf. 1995, 2, 231–238. [Google Scholar] [CrossRef]
- Steinke, M.E.; Kandlikar, S.G. Single-phase liquid heat transfer in plain and enhanced microchannels. In Proceedings of the 4th International Conference on Nanochannels, Microchannels Minichannels (ICNMM2006), Limerick, Ireland, 19–21 June 2006. [Google Scholar]
- Ghani, U.; Wazir, M.A.; Akhtar, K.; Wajib, M.; Shaukat, S. Microchannel Heat Sinks—A Comprehensive Review. Electron. Mater. 2024, 5, 249–292. [Google Scholar] [CrossRef]
Characteristics | DSMPF | DSMTF |
---|---|---|
Heat sink dimensions, W × L × H | 40 × 40 × 6 | |
Minichannel footprint area, Wmc × Lmc | 30 × 30 | |
Main channel width, Wch | 1.5 | |
Fin width, Ww | 1 | |
Channel depth, Hch | 2 | |
Heat sink base thickness, Hb | 2 | |
Hydraulic diameter, Dh,ch | 1.714 | |
Outer radius of the curved main channel, R1 | 2.0 | |
Inner radius of the curved main channel, R2 | 0.5 | |
Secondary flow channel width, wsc | - | 0.5 |
Secondary flow channel length, lsc | - | 1 |
Leading radius of secondary flow channel, rsc | - | 0.5 |
Chevron fin length, lf | - | 1.3 |
Chevron fin pitch, pf | - | 2.3 |
Chevron oblique angle, θf | - | 30° |
Triangular rib width, wr | - | 0.5 |
Triangular rib height, hr | - | 0.5 |
Triangular rib pitch, pr | 0.8 | |
Triangular rib oblique angle, θr | 25° |
μ, Pa*s | ρ, kg/m3 | κ, W/(m*K) | Cp, J/(kg*K) | |
---|---|---|---|---|
Water | 0.001 | 998.2 | 0.6 | 4128 |
Copper | - | 8933 | 387.6 | 390 |
DSMPF | |||||||||
Grid1 | E% | Grid2 | E% | Grid3 | E% | Grid4 | E% | Grid5 | |
Grids | 1.484 × 106 | 2.213 × 106 | 3.927 × 106 | 5.716 × 106 | 8.807 × 106 | ||||
Tw,max (°C) | 71.704 | 12.014 | 68.755 | 7.406 | 66.443 | 3.794 | 65.005 | 1.548 | 64.014 |
ΔP (Pa) | 5274.60 | 15.194 | 5580.11 | 10.283 | 5754.37 | 7.481 | 5932.16 | 4.622 | 6219.64 |
DSMTF | |||||||||
Grid1 | E% | Grid2 | E% | Grid3 | E% | Grid4 | E% | Grid5 | |
Grids | 1.560 × 106 | 2.364 × 106 | 4.453 × 106 | 6.689 × 106 | 1.066 × 107 | ||||
Tw,max (°C) | 65.883 | 7.615 | 64.366 | 5.138 | 62.761 | 2.516 | 61.881 | 1.078 | 61.221 |
ΔP (Pa) | 3054.83 | 11.598 | 3142.69 | 8.786 | 3261.89 | 5.327 | 3348.28 | 2.819 | 3445.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Ma, Y.; Lv, M.; Wang, X.; Shi, X. Performance-Enhanced Double Serpentine Minichannel Heat Sink for Phased-Array Radar High-Heat-Flux Chip Cooling. Electronics 2025, 14, 2246. https://doi.org/10.3390/electronics14112246
Zhang L, Ma Y, Lv M, Wang X, Shi X. Performance-Enhanced Double Serpentine Minichannel Heat Sink for Phased-Array Radar High-Heat-Flux Chip Cooling. Electronics. 2025; 14(11):2246. https://doi.org/10.3390/electronics14112246
Chicago/Turabian StyleZhang, Li, Yan Ma, Miao Lv, Xinhuai Wang, and Xiaowei Shi. 2025. "Performance-Enhanced Double Serpentine Minichannel Heat Sink for Phased-Array Radar High-Heat-Flux Chip Cooling" Electronics 14, no. 11: 2246. https://doi.org/10.3390/electronics14112246
APA StyleZhang, L., Ma, Y., Lv, M., Wang, X., & Shi, X. (2025). Performance-Enhanced Double Serpentine Minichannel Heat Sink for Phased-Array Radar High-Heat-Flux Chip Cooling. Electronics, 14(11), 2246. https://doi.org/10.3390/electronics14112246