Industry 4.0 Transformation: Analysing the Impact of Artificial Intelligence on the Banking Sector through Bibliometric Trends
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Description of data from the literature.
- Publication activity by author.
- Publication activity by country.
- Co-occurrence of keywords.
- Analysis of the most cited papers.
- Analysis of specialised journals.
3.1. Description of Data from the Literature
3.1.1. Publication Type
3.1.2. Publications and Annual Citations
3.1.3. Research Areas
3.2. Publication Activity by Author (Co-Authorship)
3.3. Publishing Activity by Country
3.3.1. Prolific Countries/Regions
3.3.2. Country Collaboration of Co-Authors
3.4. Co-Appearance of Keywords
4. Discussions
4.1. Analysis of the Most Cited Papers
4.2. Analysis of Journals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jovanovic, M.; Sjodin, D.; Parida, V. Co-evolution of platform architecture, platform services, and platform governance: Expanding the platform value of industrial digital platforms. Technovation 2022, 118, 102218. [Google Scholar] [CrossRef]
- Benbya, H.; Pachidi, S.; Jarvenpaa, S.L. Artificial intelligence in organizations: Implications for information systems research. J. Assoc. Inf. Syst. 2022, 22, 10. [Google Scholar] [CrossRef]
- European Commission. Artificial Intelligence for Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0237 (accessed on 3 December 2023).
- Popowicz, J.E.; Asaju, T.; Hinge, D. Fintech Benchmarks 2024 Report—The Promise and Threat of AI. Available online: https://www.centralbanking.com/benchmarking/fintech/7960927/fintech-benchmarks-2024-report-the-promise-and-threat-of-ai (accessed on 11 April 2024).
- Bhattacharyya, D.; Dietz, M.; Edlich, A.; Hol, R.; Mehta, A.; Weintraub, B.; Windhagen, E. Global Banking Annual Review 2023: The Great Banking Transition. Available online: https://www.mckinsey.com/industries/financial-services/our-insights/global-banking-annual-review (accessed on 11 April 2024).
- van Zeeland, I.; Pierson, J. Changing the whole game: Effects of the COVID-19 pandemic’s accelerated digitalization on European bank staff’s data protection capabilities. Financ. Innov. 2024, 10, 29. [Google Scholar] [CrossRef]
- Financial Stability Board (FSB). FinTech and Market Structure in the COVID-19 Pandemic: Implications for Financial Stability. 2022. Available online: https://www.fsb.org/wp-content/uploads/P210322.pdf (accessed on 11 April 2024).
- Ross, S. What Percentage of the Global Economy Is Comprised of the Financial Services Sector. Investopedia. Available online: https://www.investopedia.com/ask/answers/030515/what-percentage-global-economy-comprised-financial-services-sector.asp (accessed on 3 December 2023).
- Omoge, A.P.; Gala, P.; Horky, A. Disruptive technology and AI in the banking industry of an emerging market. Int. J. Bank Mark. 2022, 40, 1217–1247. [Google Scholar] [CrossRef]
- Chung, M.; Ko, E.; Joung, H.; Kim, S.J. Chatbot e-service and customer satisfaction regarding luxury brands. J. Bus. Res. 2020, 117, 587–595. [Google Scholar] [CrossRef]
- Godey, B.; Manthiou, A.; Pederzoli, D. Social media marketing efforts of luxury brands: Influence on brand equity and consumer behavior. J. Bus. Res. 2016, 69, 5833–5841. [Google Scholar] [CrossRef]
- Kreger, A. The Future of AI in Banking. Forbes Business Council. Available online: https://www.forbes.com/sites/forbesbusinesscouncil/2023/03/20/the-future-of-ai-in-banking/?sh=2305d8355ed5/ (accessed on 3 December 2023).
- Capgemini Research Institute. Word Retail Banking Report 2024. Available online: https://www.capgemini.com/insights/research-library/world-retail-banking-report/ (accessed on 11 April 2024).
- European Central Bank. From Data to Decisions: AI and Supervision. Available online: https://www-bankingsupervision-europa-eu.translate.goog/press/interviews/date/2024/html/ssm.in240226~c6f7fc9251.en.html?xtrsl=en&xtrtl=ro&xtrhl=ro&xtrpto=sc (accessed on 11 April 2024).
- Accenture Pulse of Change. Pulse of Change: 2024 Index. Available online: https://www.accenture.com/us-en/about/company/pulse-of-change (accessed on 11 April 2024).
- Zolkepli, I.A.; Kamarulzaman, Y. Social media adoption: The role of media needs and innovation characteristics. Comput. Hum. Behav. 2015, 43, 189–209. [Google Scholar] [CrossRef]
- Silva, R.D. Calls for behavioural biometrics as bank fraud soars. Biom. Technol. Today 2021, 2021, 7–9. [Google Scholar] [CrossRef]
- Roseline, J.F.; Naidu, G.; Pandi, V.S.; Rajasree, S.A.; Mageswari, N. Autonomous credit card fraud detection using machine learning approach. Comput. Electr. Eng. 2022, 102, 108132. [Google Scholar] [CrossRef]
- Maja, M.M.; Letaba, P. Towards a data-driven technology roadmap for the bank of the future: Exploring big data analytics to support technology roadmapping. Soc. Sci. Humanit. Open 2022, 6, 100270. [Google Scholar] [CrossRef]
- Garg, P.; Gupta, B.; Chauhan, A.K.; Sivarajah, U.; Gupta, S.; Modgil, S. Measuring the perceived benefits of implementing blockchain technology in the banking sector. Technol. Forecast. Soc. Chang. 2021, 163, 120407. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.N. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Pattnaik, D. Forty-five years of Journal of Business Research: A bibliometric analysis. J. Bus. Res. 2019, 109, 1–14. [Google Scholar] [CrossRef]
- Verma, S.; Gustafsson, A. Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. J. Bus. Res. 2020, 118, 253–261. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Chen, X.; Ling, X.; Smith, T.; Zhu, Y. Research in finance: A review of influential publications and a research agenda. Pac. Basin Financ. J. 2017, 43, 188–199. [Google Scholar] [CrossRef]
- Rossetto, D.E.; Bernardes, R.C.; Borini, F.M.; Gattaz, C.C. Structure and evolution of innovation research in the last 60 years: Review and future trends in the field of business through the citations and co-citations analysis. Scientometrics 2018, 115, 1329–1363. [Google Scholar] [CrossRef]
- Rauch, A. Opportunities and threats in reviewing entrepreneurship theory and practice. Entrep. Theory Pract. 2020, 44, 847–860. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, N.; Kaur, J. Fifteen years of the Social Responsibility Journal: A retrospective using bibliometric analysis. Soc. Responsib. J. 2020, 19, 377–397. [Google Scholar] [CrossRef]
- Baker, H.K.; Satish, K.; Nitesh, P. A bibliometric analysis of managerial finance: A retrospective. Manag. Financ. 2020, 46, 1495–1517. [Google Scholar] [CrossRef]
- Tunger, D.; Eulerich, M. Bibliometric analysis of corporate governance research in german-speaking countries: Applying bibliometrics to business research using a custom-made database. Scientometrics 2018, 117, 2041–2059. [Google Scholar] [CrossRef]
- Pesta, B.; Fuerst, J.; Kirkegaard, E.O.W. Bibliometric keyword analysis across seventeen years (2000–2016) of intelligence articles. J. Intell. 2018, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Kringelum, B.L.; Øland, M.C.; Selivanovskikh, L. Interorganizational learning: A bibliometric review and research agenda. Learn. Organ. 2020, 28, 111–136. [Google Scholar] [CrossRef]
- Khatib, S.F.A.; Abdullah, D.F.; Elamer, A.; Yahaya, I.S.; Owusu, A. Global trends in board diversity research: A bibliometric view. Meditari Account. Res. 2023, 31, 441–469. [Google Scholar] [CrossRef]
- Boucher, P. Artificial Intelligence: How Does It Work, Why Does It Matter, and What Can We Do about It? 2020. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2020/641547/EPRS_STU(2020)641547_EN.pdf (accessed on 11 April 2024).
- Kalyani, S.; Gupta, N. Is artificial intelligence and machine learning changing the ways of banking: A systematic literature review and meta-analysis. Discov. Artif. Intell. 2023, 3, 41. [Google Scholar] [CrossRef]
- Lambert, S.L.; Davidson, B.I.; LeMay, S.A. Survey of Emerging Blockchain Technologies for Improving the Data Integrity and Auditability of Manufacturing Bills of Materials in Enterprise Resource Planning. J. Emerg. Technol. Account. 2023, 20, 119–134. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Managi, S. A bibliometric analysis on green finance: Current status, development, and future directions. Financ. Res. Lett. 2019, 29, 425–430. Available online: https://www.sciencedirect.com/science/article/pii/S1544612319300765 (accessed on 19 April 2024). [CrossRef]
- Kouwenberg, R.; Zheng, C. A Review of the Global Climate Finance Literature. Sustainability 2023, 15, 1255. [Google Scholar] [CrossRef]
- Weber, P.; Carl, K.V.; Hinz, O. Applications of Explainable Artificial Intelligence in Finance—A systematic review of Finance, Information Systems, and Computer Science literature. Manag. Rev. Q. 2023, 1–41. [Google Scholar] [CrossRef]
- Bahoo, S.; Cucculelli, M.; Goga, X.; Mondolo, J. Artificial intelligence in Finance: A comprehensive review through bibliometric and content analysis. SN Bus. Econ. 2024, 4, 23. [Google Scholar] [CrossRef]
- Tam, K.Y.; Melody, Y.K. Managerial Applications of Neural Networks: The Case of Bank Failure Predictions. Manag. Sci. 1992, 38, 926–947. [Google Scholar] [CrossRef]
- Varetto, F. Genetic algorithms applications in the analysis of insolvency risk. J. Bank. Financ. 1998, 22, 1421–1439. [Google Scholar] [CrossRef]
- Hashemi, R.R.; Le Blanc, L.A.; Rucks, C.T.; Rajaratnam, A. A hybrid intelligent system for predicting bank holding structures. Eur. J. Oper. Res. 1998, 109, 390–402. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Xu, W.; Shi, Y. Support Vector Machines Approach to Credit Assessment. In Computational Science—ICCS 2004; Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3039. [Google Scholar] [CrossRef]
- Fethi, M.D.; Pasiouras, F. Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey. Eur. J. Oper. Res. 2010, 204, 189–198. [Google Scholar] [CrossRef]
- Mor, S.; Gupta, G. Artificial intelligence and technical efficiency: The case of Indian commercial banks. Strateg. Chang. 2021, 30, 235–245. [Google Scholar] [CrossRef]
- Doumpos, M.; Zopounidis, C.; Gounopoulos, D.; Platanakis, E.; Zhang, W. Operational research and artificial intelligence methods in banking. Eur. J. Oper. Res. 2023, 306, 1–16. [Google Scholar] [CrossRef]
- Oreski, S.; Oreski, G. Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst. Appl. 2014, 41 Pt 2, 2052–2064. [Google Scholar] [CrossRef]
Type | Number |
---|---|
Articles | 681 |
Conference papers | 260 |
Review articles | 65 |
Early access | 60 |
Book chapters | 12 |
Editorial material | 5 |
Meeting abstract | 5 |
Data paper | 1 |
Year | Number of Publications | Number of Citations |
---|---|---|
2000 | 3 | 0 |
2001 | 3 | 2 |
2002 | 2 | 0 |
2003 | 3 | 2 |
2004 | 4 | 7 |
2005 | 4 | 7 |
2006 | 1 | 14 |
2007 | 2 | 22 |
2008 | 6 | 28 |
2009 | 9 | 23 |
2010 | 8 | 40 |
2011 | 9 | 44 |
2012 | 12 | 59 |
2013 | 13 | 62 |
2014 | 17 | 128 |
2015 | 20 | 172 |
2016 | 13 | 186 |
2017 | 29 | 201 |
2018 | 44 | 312 |
2019 | 76 | 520 |
2020 | 122 | 799 |
2021 | 168 | 1525 |
2022 | 232 | 2462 |
2023 | 213 | 3381 |
No. | Authors’ Names | Title of the Paper | Year of Publication | Number of Citations | Journal Name |
---|---|---|---|---|---|
1 | Kar Yan Tam, Melody Y. Kiang | Managerial Applications of Neural Networks: The Case of Bank Failure Predictions | 1992 | 615 | Management Science |
2 | Meryem Duygun Fethi, Fotios Pasiouras | Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey | 2010 | 397 | European Journal of Operational Research |
3 | Stjepan Oreski, Goran Oreski | Genetic algorithm-based heuristic for feature selection in credit risk assessment | 2014 | 270 | Expert Systems with Applications |
4 | Yogesh K. Dwivedi, Nir Kshetri Laurie Hughes et al. | Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy | 2023 | 163 | International Journal of Information Management |
5 | Varetto, F | Genetic algorithms applications in the analysis of insolvency risk | 1998 | 138 | Journal of Banking & Finance |
6 | Maher Ala’raj, Maysam F. Abbod | Classifiers consensus system approach for credit scoring | 2016 | 125 | Knowledge-Based Systems |
7 | Joaquín Abellán, Javier G. Castellano | A comparative study on base classifiers in ensemble methods for credit scoring | 2017 | 123 | Expert Systems with Applications |
8 | Tim Fountaine, Brian McCarthy, and Tamim Saleh | Building the AI-Powered Organization Technology isn’t the biggest challenge. Culture is. | 2019 | 107 | Harvard Business Review Home |
No. | Journal | Domain | Impact Factor (2022) | Impact Factor over the Last 5 Years | Quartile | Number of Articles Published | Number of Citations |
---|---|---|---|---|---|---|---|
1 | International Journal of Bank Marketing | Business | 5.3 | 6.3 | Q1 | 15 | 231 |
2 | IEEE Access | Computer Science, Information Systems | 3.9 | 4.1 | Q2 | 15 | 150 |
3 | Sustainability | Environmental Sciences | 3.9 | 4 | Q2 | 13 | 198 |
4 | Expert Systems with Applications | Computer Science, Artificial Intelligence | 8.5 | 8.3 | Q1 | 11 | 618 |
5 | Strategic Change: Briefings in Entrepreneurial Finance | Business, Finance | 2.8 | 2.8 | Q2 | 9 | 113 |
6 | Applied Sciences—Basel | Engineering, Multidisciplinary | 2.7 | 2.9 | Q2 | 9 | 70 |
7 | Mathematics | Mathematics | 2.4 | 2.3 | Q1 | 8 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manta, A.G.; Bădîrcea, R.M.; Doran, N.M.; Badareu, G.; Gherțescu, C.; Popescu, J. Industry 4.0 Transformation: Analysing the Impact of Artificial Intelligence on the Banking Sector through Bibliometric Trends. Electronics 2024, 13, 1693. https://doi.org/10.3390/electronics13091693
Manta AG, Bădîrcea RM, Doran NM, Badareu G, Gherțescu C, Popescu J. Industry 4.0 Transformation: Analysing the Impact of Artificial Intelligence on the Banking Sector through Bibliometric Trends. Electronics. 2024; 13(9):1693. https://doi.org/10.3390/electronics13091693
Chicago/Turabian StyleManta, Alina Georgiana, Roxana Maria Bădîrcea, Nicoleta Mihaela Doran, Gabriela Badareu, Claudia Gherțescu, and Jenica Popescu. 2024. "Industry 4.0 Transformation: Analysing the Impact of Artificial Intelligence on the Banking Sector through Bibliometric Trends" Electronics 13, no. 9: 1693. https://doi.org/10.3390/electronics13091693
APA StyleManta, A. G., Bădîrcea, R. M., Doran, N. M., Badareu, G., Gherțescu, C., & Popescu, J. (2024). Industry 4.0 Transformation: Analysing the Impact of Artificial Intelligence on the Banking Sector through Bibliometric Trends. Electronics, 13(9), 1693. https://doi.org/10.3390/electronics13091693