Bipartite Formation Control of Nonlinear Multi-Agent Systems with Fixed and Switching Topologies under Aperiodic DoS Attacks
Abstract
:1. Introduction
- This paper investigates the formation control problem considering the competitive relationship in MASs, and our study is more extensive.
- The distributed control protocols are proposed considering the situations of both fixed and switching topologies for nonlinear MASs with aperiodic DoS attacks, which is more practical and general.
- Sufficient conditions are obtained and proved in detail to ensure that nonlinear leader-following MASs with either fixed or switching topologies can realize bipartite formation under aperiodic DoS attacks.
2. Preliminaries and Model Formulation
2.1. Preliminaries
- (1)
- Notations
- (2)
- Graph Theory
- (i)
- , .
- (ii)
- , for all , .
- (iii)
- , for all , , , .
- (i)
- The matrix is positive definite.
- (ii)
- for all .
- (3)
- Aperiodic DoS Attacks
2.2. Model Formulation
3. Analysis of Model and Main Results
3.1. Bipartite Formation Control with Fixed Topology under Aperiodic DoS Attacks
3.2. Bipartite Formation Control with Switching Topology under Aperiodic DoS Attacks
4. Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, X.; Hui, Q. Energy-Event-Triggered Hybrid Supervisory Control for Cyber-Physical Network Systems. IEEE Trans. Autom. Control 2015, 60, 3083–3088. [Google Scholar] [CrossRef]
- Liang, H.; Cao, H.; Fu, Y. Decentralized Adaptive Flocking Control Algorithm with Avoiding Collision and Preserving Connectivity for Crowded UUV Swarm with Uncertainties and Input Saturation. Ocean Eng. 2021, 237, 109545. [Google Scholar] [CrossRef]
- Qiu, Z.; Tian, S.; Zhou, B.; Han, Q.; Tian, Y.; Weng, T.; Mamut, T. Consensus of Fixed and Adaptive Coupled Multi-Agent Systems with Communication Delays. Electronics 2023, 12, 1279. [Google Scholar] [CrossRef]
- Ma, L.; Zong, G.; Zhao, X.; Huo, X. Observed-Based Adaptive Finite-Time Tracking Control for a Class of Nonstrict-Feedback Nonlinear Systems with Input Saturation. J. Frankl. Inst. 2020, 357, 11518–11544. [Google Scholar] [CrossRef]
- Xia, G.; Xia, X.; Sun, X. Formation Control with Collision Avoidance for Underactuated Surface Vehicles. Asian J. Control 2022, 24, 2244–2257. [Google Scholar] [CrossRef]
- Löwe, M.; Schubert, K.; Vermet, F. Multi-Group Binary Choice with Social Interaction and a Random Communication Structure—A Random Graph Approach. Phys. Stat. Mech. Appl. 2020, 556, 124735. [Google Scholar] [CrossRef]
- Zhan, Z.; Shi, J.; Wen, F. Phase Compensation-based 2D-DOA estimation for EMVS-MIMO radar. IEEE Trans. Aerosp. Electron. Syst. 2024. [Google Scholar] [CrossRef]
- Liu, W.; Gao, Z. A Distributed Flocking Control Strategy for UAV Groups. Comput. Commun. 2020, 153, 95–101. [Google Scholar] [CrossRef]
- Wen, F.; Wang, H.; Gui, G.; Sari, H.; Adachi, F. Polarized intelligent reflecting surface aided 2D-DOA estimation for NLoS sources. IEEE Trans. Wirel. Commun. 2024. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Xu, Z.; Zhou, X.; Li, S. Collaboration of Multiple SCARA Robots with Guaranteed Safety Using Recurrent Neural Networks. Neurocomputing 2021, 456, 1–10. [Google Scholar] [CrossRef]
- Ye, Z.; Cheng, Y.; Yu, Z.; Jiang, B. Distributed Adaptive Fault-Tolerant Control for Leaderless/Leader–Follower Multi-Agent Systems against Actuator and Sensor Faults. Electronics 2023, 12, 2924. [Google Scholar] [CrossRef]
- Han, T.; Guan, Z.-H.; Wu, Y.; Zheng, D.-F.; Zhang, X.-H.; Xiao, J.-W. Three-Dimensional Containment Control for Multiple Unmanned Aerial Vehicles. J. Frankl. Inst. 2016, 353, 2929–2942. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, W. Trajectory Tracking Control of AUVs via Adaptive Fast Nonsingular Integral Terminal Sliding Mode Control. IEEE Trans. Ind. Inform. 2020, 16, 1248–1258. [Google Scholar] [CrossRef]
- Shi, L.; Guo, W.; Wang, L.; Bekiros, S.; Alsubaie, H.; Alotaibi, A.; Jahanshahi, H. Stochastic Fixed-Time Tracking Control for the Chaotic Multi-Agent-Based Supply Chain Networks with Nonlinear Communication. Electronics 2022, 12, 83. [Google Scholar] [CrossRef]
- Saleh, M.; Esa, Y.; Mohamed, A. Applications of Complex Network Analysis in Electric Power Systems. Energies 2018, 11, 1381. [Google Scholar] [CrossRef]
- Djamari, D.W. Distributed Position Estimation Approach for Multiagent Formation with Size Scaling. Asian J. Control 2022, 24, 439–447. [Google Scholar] [CrossRef]
- Ranjbar, M.; Beheshti, M.T.H.; Bolouki, S. Event-Based Formation Control of Networked Multi-Agent Systems Using Complex Laplacian Under Directed Topology. IEEE Control Syst. Lett. 2021, 5, 1085–1090. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, D.; Duan, H. Distributed Planar Formation Maneuvering of Leader-Follower Networked Systems via a Barycentric Coordinate-Based Approach. Sci. China Technol. Sci. 2021, 64, 1705–1718. [Google Scholar] [CrossRef]
- Liu, H.; Ma, T.; Lewis, F.L.; Wan, Y. Robust Formation Control for Multiple Quadrotors with Nonlinearities and Disturbances. IEEE Trans. Cybern. 2020, 50, 1362–1371. [Google Scholar] [CrossRef]
- Guo, K.; Li, X.; Xie, L. Ultra-Wideband and Odometry-Based Cooperative Relative Localization with Application to Multi-UAV Formation Control. IEEE Trans. Cybern. 2020, 50, 2590–2603. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, J.; Liu, P.X. Finite-Time Robust Formation Control of Multiple Aerial Robotic Vehicles with Uncertainties and Time-Varying Complex Perturbations. Commun. Nonlinear Sci. Numer. Simul. 2024, 129, 107672. [Google Scholar] [CrossRef]
- He, Q.; Liu, W. Formation Control for Linear Multi-Agent Systems with Asynchronously Sampled Outputs. Inf. Sci. 2024, 658, 119992. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, S.; Guo, G.; Yuan, P.; Bai, J. Formation Control of UAV–USV Based on Distributed Event-Triggered Adaptive MPC with Virtual Trajectory Restriction. Ocean Eng. 2024, 294, 116850. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, Z.; Dimarogonas, D.V. Prescribed Performance Formation Control for Second-Order Multi-Agent Systems with Connectivity and Collision Constraints. Automatica 2024, 160, 111412. [Google Scholar] [CrossRef]
- Zhang, S.; Li, T.; Cheng, X.; Li, J.; Xue, B. Multi-Group Formation Tracking Control for Second-Order Nonlinear Multi-Agent Systems Using Adaptive Neural Networks. IEEE Access 2021, 9, 168207–168215. [Google Scholar] [CrossRef]
- Yang, R.; Peng, L.; Yang, Y.; Zhu, F. Bipartite Consensus of Linear Multi-Agent Systems by Distributed Event-Triggered Control. J. Syst. Sci. Complex. 2021, 34, 955–974. [Google Scholar] [CrossRef]
- Wang, W.; Huang, C.; Huang, C.; Cao, J.; Lu, J.; Wang, L. Bipartite Formation Problem of Second-Order Nonlinear Multi-Agent Systems with Hybrid Impulses. Appl. Math. Comput. 2020, 370, 124926. [Google Scholar] [CrossRef]
- Li, W.; Du, X.; Xiao, J.; Zhang, L. Bipartite Hybrid Formation Tracking Control for Heterogeneous Multi-Agent Systems in Multi-Group Cooperative-Competitive Networks. Appl. Math. Comput. 2023, 456, 128133. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, H.; Zhang, J.; Xi, R.; He, Q. Fully Distributed Bipartite Time-varying Formation Control for Uncertain Linear Multi-agent Systems under Event-triggered Mechanism. Int. J. Robust Nonlinear Control 2021, 31, 5165–5187. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, H.; Wang, Y.; Gao, Z.; He, Q. Adaptive Bipartite Fixed-Time Time-Varying Output Formation-Containment Tracking of Heterogeneous Linear Multiagent Systems. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 4688–4698. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, F.; Xu, D. Self-Triggered Bipartite Formation-Containment Control for Heterogeneous Multi-Agent Systems with Disturbances. Neurocomputing 2023, 548, 126382. [Google Scholar] [CrossRef]
- Du, X.; Li, W.; Xiao, J.; Chen, Z. Bipartite Time-Varying Formation Group Containment Control for Multi-Agent Systems Based on Multi-Layer Network and Semi-Signed Directed Graph. J. Frankl. Inst. 2023, 360, 1929–1952. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Cai, Y.; Wang, Y. Fully Distributed Event-Triggered Bipartite Formation Tracking for Multi-Agent Systems with Multiple Leaders and Matched Uncertainties. Inf. Sci. 2022, 596, 537–550. [Google Scholar] [CrossRef]
- Cui, Y.; Sun, H.; Hou, L. Decentralized Event-Triggered Adaptive Neural Network Control for Nonstrict-Feedback Nonlinear Interconnected Systems with External Disturbances against Intermittent DoS Attacks. Neurocomputing 2023, 517, 133–147. [Google Scholar] [CrossRef]
- Javadpour, A.; Ja’fari, F.; Taleb, T.; Shojafar, M.; Yang, B. SCEMA: An SDN-Oriented Cost-Effective Edge-Based MTD Approach. IEEE Trans. Inf. Forensics Secur. 2023, 18, 667–682. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, G.-H. Adaptive Fault-Tolerant Control for Nonlinear Multi-Agent Systems with DoS Attacks. Inf. Sci. 2020, 526, 39–53. [Google Scholar] [CrossRef]
- Wang, J.; Gao, J.; Wu, P. Attack-Resilient Event-Triggered Formation Control of Multi-Agent Systems under Periodic DoS Attacks Using Complex Laplacian. ISA Trans. 2022, 128, 10–16. [Google Scholar] [CrossRef]
- Ren, C.-E.; Li, R. Switched Observer-Based Dynamic Event-Triggered Consensus of Multi-Agent Systems under DoS Attacks. J. Frankl. Inst. 2023, 360, 4331–4353. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, C.; Zhang, B.; Jiang, Y. Event-Triggered Based Security Consensus Control for Multi-Agent Systems with DoS Attacks. Neurocomputing 2022, 505, 214–224. [Google Scholar] [CrossRef]
- Liu, H. Event-Triggering-Based Leader-Following Bounded Consensus of Multi-Agent Systems under DoS Attacks. Commun. Nonlinear Sci. Numer. Simul. 2020, 89, 105342. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, Z.; Cui, B. Impulsive Consensus of Nonlinear Fuzzy Multi-Agent Systems under DoS Attack. Nonlinear Anal. Hybrid Syst. 2022, 44, 101155. [Google Scholar] [CrossRef]
- Wang, P.-B.; Ren, X.-M.; Zheng, D.-D. Event-Triggered Resilient Control for Cyber-Physical Systems under Periodic DoS Jamming Attacks. Inf. Sci. 2021, 577, 541–556. [Google Scholar] [CrossRef]
- Su, L.; Ye, D. Reprint of: Observer-Based Output Feedback H ∞ Control for Cyber–Physical Systems under Randomly Occurring Packet Dropout and Periodic DoS Attacks. ISA Trans. 2020, 104, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Franceschelli, M.; Pisano, A.; Giua, A.; Usai, E. Finite-Time Consensus with Disturbance Rejection by Discontinuous Local Interactions in Directed Graphs. IEEE Trans. Autom. Control 2015, 60, 1133–1138. [Google Scholar] [CrossRef]
- Yang, T.; Deng, Y.; Li, H.; Sun, Z.; Cao, H.; Wei, Z. Fast Integral Terminal Sliding Mode Control with a Novel Disturbance Observer Based on Iterative Learning for Speed Control of PMSM. ISA Trans. 2023, 134, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.-Z.; Li, Y.-X.; Hou, Z.-S. Distributed Model-Free Adaptive Control for Multi-Agent Systems with External Disturbances and DoS Attacks. Inf. Sci. 2022, 613, 309–323. [Google Scholar] [CrossRef]
- Altafini, C. Consensus Problems on Networks with Antagonistic Interactions. IEEE Trans. Autom. Control 2013, 58, 935–946. [Google Scholar] [CrossRef]
- Olfati-Saber, R.; Murray, R.M. Consensus Problems in Networks of Agents with Switching Topology and Time-Delays. IEEE Trans. Autom. Control 2004, 49, 1520–1533. [Google Scholar] [CrossRef]
- Dong, T.; Gong, Y. Leader-Following Secure Consensus for Second-Order Multi-Agent Systems with Nonlinear Dynamics and Event-Triggered Control Strategy under DoS Attack. Neurocomputing 2020, 416, 95–102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Li, S.; Wang, Y.; Hui, Y.; Han, J. Bipartite Formation Control of Nonlinear Multi-Agent Systems with Fixed and Switching Topologies under Aperiodic DoS Attacks. Electronics 2024, 13, 696. https://doi.org/10.3390/electronics13040696
Li T, Li S, Wang Y, Hui Y, Han J. Bipartite Formation Control of Nonlinear Multi-Agent Systems with Fixed and Switching Topologies under Aperiodic DoS Attacks. Electronics. 2024; 13(4):696. https://doi.org/10.3390/electronics13040696
Chicago/Turabian StyleLi, Tao, Shihao Li, Yuanmei Wang, Yingwen Hui, and Jing Han. 2024. "Bipartite Formation Control of Nonlinear Multi-Agent Systems with Fixed and Switching Topologies under Aperiodic DoS Attacks" Electronics 13, no. 4: 696. https://doi.org/10.3390/electronics13040696
APA StyleLi, T., Li, S., Wang, Y., Hui, Y., & Han, J. (2024). Bipartite Formation Control of Nonlinear Multi-Agent Systems with Fixed and Switching Topologies under Aperiodic DoS Attacks. Electronics, 13(4), 696. https://doi.org/10.3390/electronics13040696