High-Resolution Remote Sensing Image Change Detection Based on Cross-Mixing Attention Network
Abstract
:1. Introduction
- (1)
- The feature alignment module is designed to resample feature maps to obtain aligned feature maps and alleviate the problem of detection accuracy degradation due to alignment error.
- (2)
- The cross-mixing attention module is designed to better utilize the spatiotemporal information between dual-temporal remote sensing images and generate the attention weight map.
- (3)
- The ordinary up-sampling method is parameterless and unlearnable; in this paper, the attention weight map is used to guide the up-sampling, optimize the global feature information, and generate a more complete change prediction map. Experimental verification confirms that the proposed network enhances the change detection performance.
2. The Proposed Method
2.1. Overall Network Structure
2.2. Feature Alignment Module
2.3. Cross-Mixing Attention Module
2.4. Cross-Mixing Module and Guiding Up-Sampling
2.5. Loss Function
3. Datasets and Model Evaluation Indicators
3.1. Remote Image Datasets
3.2. Model Evaluation Indicators
4. Experimental Design and Results Discussion
4.1. Ablation Experiments on the LEVIR-CD Dataset
4.1.1. Results of Ablation Experiments with Increased FAM
4.1.2. Results of Ablation Experiments with Increased CMAM
4.1.3. Results of Ablation Experiments with Increased FAM and CMAM
4.2. Ablation Experiments on the SYSU-CD Dataset
4.2.1. Results of Ablation Experiments with Increased FAM
4.2.2. Results of Ablation Experiments with Increased CMAM
4.2.3. Results of Ablation Experiments with Increased FAM and CMAM
4.3. Comparison Experiments on the LEVIR-CD Dataset
4.4. Comparison Experiments on the SYSU-CD Dataset
5. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.X.; Jiang, H.W.; Pang, S.Y.; Hu, X. Review and prospect in change detection of mult-temporal remotesensing images. Acta Geod. Cartogr. Sin. 2022, 51, 1091–1107. [Google Scholar]
- Schaum, A. Local covariance equalization of hyperspectral imagery: Advantages and limitations for target detection. In Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2005; pp. 2001–2011. [Google Scholar]
- Pourreza, M.; Moradi, F.; Khosravi, M.; Deljouei, A.; Vanderhoof, M.K. GCPs-free photogrammetry for estimating tree height and crown diameter in Arizona Cypress plantation using UAV-mounted GNSS RTK. Forests 2022, 13, 1905. [Google Scholar] [CrossRef]
- Moradi, F.; Darvishsefat, A.A.; Pourrahmati, M.R.; Deljouei, A.; Borz, S.A. Estimating aboveground biomass in dense Hyrcanian forests by the use of Sentinel-2 data. Forests 2022, 13, 104. [Google Scholar]
- Eismann, M.T.; Meola, J.; Hardie, R.C. Hyperspectral change detection in the presenceof diurnal and seasonal variations. IEEE Trans. Geosci. Remote Sens. 2007, 46, 237–249. [Google Scholar] [CrossRef]
- Zhou, J.; Kwan, C.; Ayhan, B.; Eismann, M.T. A novel cluster kernel RX algorithm for anomaly and change detection using hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6497–6504. [Google Scholar] [CrossRef]
- Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef] [PubMed]
- İlsever, M.; Ünsalan, C. Two-Dimensional Change Detection Methods: Remote Sensing Applications; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Kwan, C. Methods and challenges using multispectral and hyperspectral images for practical change detection applications. Information 2019, 10, 353. [Google Scholar] [CrossRef]
- Amare, M.T.; Demissie, S.T.; Beza, S.A.; Erena, S.H. Land Cover Change Detection and Prediction in the Fafan Catchment of Ethiopia. J. Geovisualization Spat. Anal. 2023, 7, 19. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Urban change detection for multispectral earth observation using convolutional neural networks. In Proceedings of the IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2115–2118. [Google Scholar]
- Gupta, R.; Hosfelt, R.; Sajeev, S.; Patel, N.; Goodman, B.; Doshi, J.; Heim, E.; Choset, H.; Gaston, M. xbd: A dataset for assessing building damage from satellite imagery. arXiv 2019, arXiv:1911.09296. [Google Scholar]
- Jiang, J.; Xiang, J.; Yan, E.; Song, Y.; Mo, D. Forest-CD: Forest Change Detection Network Based on VHR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2506005. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Jia, L.; Li, M.; Zhang, P.; Wu, Y.; An, L.; Song, W. Remote-sensing image change detection with fusion of multiple wavelet kernels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3405–3418. [Google Scholar] [CrossRef]
- Wang, M.J.; Huang, L. Change detection method of multi-temp-oral remote sensing images based on dual-threshold exponent information entropy. Remote Sens. Inf. 2017, 32, 81–85. [Google Scholar]
- EI Amin, A.M.; Liu, Q.; Wang, Y. Convolutional neural network features based change detection in satellite images. In Proceedings of the First International Workshop on Pattern Recognition, Tokyo, Japan, 11–13 May 2016; Volume 10011, pp. 181–186. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Khelifi, L.; Mignotte, M. Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis. IEEE Access 2020, 8, 126385–126400. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change detection based on artificial intelligence: State-of-the-art and challenges. Remote Sens. 2020, 12, 1688. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Bromley, J.; Guyon, I.; Lecun, Y.; Säckinger, E.; Shah, R. Signature verification using a “siamese” time delay neural network. Adv. Neural Inf. Process. Syst. 1993, 7, 669–688. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop. In Proceedings of the DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Peng, D.; Zhang, Y.; Guan, H. End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef]
- Han, P.; Ma, C.; Bu, S.; Chen, L.; Xia, Z.; Hu, J. Correlation and Attention Mechanism based Network for Change Detection. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 June 2022; pp. 3268–3273. [Google Scholar]
- Ma, L.; Wang, L.; Zhao, C.; Ohtsuki, T. Multilayer Attention Mechanism for Change Detection in SAR Image Spatial-Frequency Domain. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; pp. 2110–2114. [Google Scholar]
- Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Huang, H.; Zhu, J.; Liu, Y.; Li, H. DASNet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1194–1206. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, M.; Li, S.; Liu, X.; Wang, F.; Zhang, L. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5604816. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Chen, H.; Shi, Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.; Yuan, Y.; Wang, Q. Edge Neighborhood Contrastive Learning for Building Change Detection. IEEE Geosci. Remote Sens. Lett. 2022, 20, 6001305. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5693–5703. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Ou, X.; Liu, L.; Tu, B.; Zhang, G.; Xu, Z. A CNN framework with slow-fast band selection and feature fusion grouping for hyperspectral image change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5524716. [Google Scholar] [CrossRef]
- Shen, Q.; Huang, J.; Wang, M.; Zhang, G.; Xu, Z. Semantic feature-constrained multitask siamese network for building change detection in high-spatial-resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2022, 189, 78–94. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. Adv. Neural Inf. Process. Syst. 2015, 28, 2017–2025. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- El Naqa, I.; Murphy, M.J. What is Machine Learning? In Machine Learning in Radiation Oncology; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
Abbreviations | Descriptions |
---|---|
BL | Deep convolutional encoding–decoding network with Siamese inputs and backbone EfficientNetB4 |
BL + FAM | Network with FAM added on top of BL |
BL + CMAM | Network with CMAM added on top of BL |
BL + FAM + CMAM | Network with FAM and CMAM added on top of BL |
Model Type | Pr/% | Rc/% | F1s/% | IoU/% | OA/% |
---|---|---|---|---|---|
BL | 91.43 | 86.15 | 88.72 | 79.72 | 99.08 |
BL + FAM | 91.74 | 87.34 | 89.50 | 81.00 | 99.11 |
BL + CMAM | 91.76 | 89.31 | 90.51 | 82.66 | 99.14 |
BL + FAM + CMAM | 92.66 | 89.52 | 91.06 | 83.59 | 99.21 |
Model Type | Pr/% | Rc/% | F1s/% | IoU/% | OA/% |
---|---|---|---|---|---|
BL | 76.66 | 76.04 | 77.89 | 63.79 | 85.20 |
BL + FAM | 79.84 | 79.73 | 79.55 | 66.05 | 85.69 |
BL + CMAM | 77.80 | 81.39 | 80.05 | 66.74 | 85.84 |
BL + FAM + BCMAM | 84.15 | 83.76 | 81.88 | 69.32 | 88.32 |
Model | Pr/% | Rc/% | F1s/% | IoU/% | OA/% |
---|---|---|---|---|---|
FC-Siam-conc | 80.03 | 76.76 | 78.36 | 64.42 | 98.22 |
FC-EF | 79.49 | 79.20 | 79.34 | 65.76 | 98.27 |
FC-Siam-diff | 83.13 | 80.97 | 82.03 | 69.54 | 98.51 |
STANet | 85.86 | 87.69 | 86.77 | 76.63 | 98.87 |
DSAMNet | 90.38 | 84.81 | 87.51 | 77.79 | 98.98 |
ENCLNet | 91.32 | 88.83 | 90.06 | 81.91 | 99.11 |
BL + FAM + CMAM | 92.66 | 89.52 | 91.06 | 83.59 | 99.17 |
Module | Pr/% | Rc/% | F1s/% | IoU/% | OA/% |
---|---|---|---|---|---|
FC-Siam-conc | 84.84 | 61.41 | 69.24 | 55.33 | 89.32 |
FC-EF | 73.68 | 70.83 | 72.23 | 56.53 | 88.27 |
FC-Siam-diff | 82.46 | 67.09 | 73.99 | 58.72 | 89.84 |
STANet | 79.14 | 72.91 | 75.89 | 61.16 | 90.03 |
DSAMNet | 75.69 | 79.25 | 77.43 | 63.17 | 90.53 |
ENCLNet | 80.53 | 75.75 | 78.07 | 64.02 | 90.83 |
BL + FAM + CMAM | 84.15 | 79.73 | 81.88 | 69.32 | 88.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Yang, L.; Guo, C.; Wu, X. High-Resolution Remote Sensing Image Change Detection Based on Cross-Mixing Attention Network. Electronics 2024, 13, 630. https://doi.org/10.3390/electronics13030630
Wu C, Yang L, Guo C, Wu X. High-Resolution Remote Sensing Image Change Detection Based on Cross-Mixing Attention Network. Electronics. 2024; 13(3):630. https://doi.org/10.3390/electronics13030630
Chicago/Turabian StyleWu, Chaoyang, Le Yang, Cunge Guo, and Xiaosuo Wu. 2024. "High-Resolution Remote Sensing Image Change Detection Based on Cross-Mixing Attention Network" Electronics 13, no. 3: 630. https://doi.org/10.3390/electronics13030630
APA StyleWu, C., Yang, L., Guo, C., & Wu, X. (2024). High-Resolution Remote Sensing Image Change Detection Based on Cross-Mixing Attention Network. Electronics, 13(3), 630. https://doi.org/10.3390/electronics13030630