A Declarative Modeling Framework for Intuitive Multiple Criteria Decision Analysis in a Visual Semantic Urban Planning Environment
Abstract
:1. Introduction
2. Paper Contributions
- A Declarative Modeling shell is proposed, allowing the DM to parametrize the MCDA mechanism of choice in an intuitive manner through a Declarative Description;
- Alternative instances of the employed MCDA mechanism are generated, all compliant with the DM’s intuitive input;
- For each instance, the best-performing samples are selected as the set of top-class representatives;
- The potential of discovery, among the top-class representatives of alternative instances, of eligible samples that might have escaped the DM’s attention through traditional concrete-valued input to the employed MCDA mechanism is one of the main benefits of Declarative Modeling;
- Based on top-class representatives of various instances, the DM has the ability to gain insights and refine the Declarative Description to be closer to their preferences, restarting the Declarative Modeling cycle;
- The intuitive input allowed by the Declarative Modeling methodology and the wide scope of the MCDA mechanisms parametrized through it ensure the applicability and adaptability of the proposed framework to an extensive range of domains with zero overhead relative to the application of the same MCDA mechanisms sans the declarative shell.
- The entire scope of the proposed framework is applied as a use case in an existing visual semantic urban planning environment for PROMETHEE I/II and weighted sum methodologies, representing outranking and utility function approaches, respectively.
3. Materials and Methods
3.1. Declarative Modeling Overview
3.2. Representative MCDA Approach—PROMETHEE I/II
3.3. Representative MCDA Approach—Utility Function
4. Declarative PROMETHEE I/II
4.1. Decision Parameters
4.2. Declarative Mapping
4.3. Declarative Weight Abstraction
4.4. Declarative Function Form and Parameter Abstraction
5. Experimental Setup
5.1. Experiments Organization
5.2. Data Sample Population
- F1—the number of other parking places in the area (1000 m);
- F2—the distance to the next nearest parking establishment;
- F3—the number of ATMs at a distance of 1000 m;
- F4—the distance from the nearest ATM;
- F5—the number of spots of tourist interest (1000 m);
- F6—the distance to the nearest spot of tourist interest;
- F7—the building area (in m2).
5.3. Experiment 1
5.3.1. Experiment 1—Declarative Description
5.3.2. Experiment 1—Declarative Description Interpretation
5.3.3. Experiment 1—Experimental Results
5.4. Experiment 2
5.4.1. Experiment 2—Declarative Description
5.4.2. Experiment 2—Declarative Description Interpretation
6. Discussion
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lucas, M.; Martin, D.; Martin, P.; Plemenos, D. The ExploFormes project: Some steps towards declarative modelling of forms. BIGRE 1990, 67, 35–49. [Google Scholar]
- Makris, D.; Bardis, G.; Miaoulis, G.; Plemenos, D. Acquisition and Exploitation of Qualitative Aspects in 3D Scene Synthesis. Int. J. Artif. Intell. Tools (IJAIT) 2009, 18, 39–59. [Google Scholar] [CrossRef]
- Smelik, R.M.; Tutenel, T.; de Kraker, K.J.; Bidarra, R. A declarative approach to procedural modeling of virtual worlds. Comput. Graph. 2011, 35, 352–363. [Google Scholar] [CrossRef]
- Zaragoza, J.; Ramos, F.; Gaildrat, V. Creation of Virtual Worlds through Knowledge-Assisted Declarative Modeling. In Proceedings of the 5th International North American Conference on Intelligent Games and Simulation, Atlanta, GA, USA, 26–28 August 2009; pp. 20–24. [Google Scholar]
- Brzychczy, E.; Szpyrka, M.; Korski, J.; Nalepa, G.J.; Imperative, vs. Declarative Modeling of Industrial Process—The Case Study of the Longwall Shearer Operation. IEEE Access 2023, 11, 54495–54508. [Google Scholar] [CrossRef]
- Endres, C.; Breitenbücher, U.; Falkenthal, M.; Kopp, O.; Leymann, F.; Wettinger, J. Declarative vs. Imperative: Two Modeling Patterns for the Automated Deployment of Applications. In Proceedings of the 9th International Conference on Pervasive Patterns and Applications, Athens, Greece, 19–23 February 2017; pp. 22–27. [Google Scholar]
- Declarative Modelling. Available online: https://www.simulistics.com/tour/declarative.htm (accessed on 30 November 2024).
- Baldoni, M.; Marengo, E. Curriculum Model Checking: Declarative Representation and Verification of Properties. In Creating New Learning Experiences on a Global Scale, Crete, Greece, 17–20 September 2007; ECTEL 2007, Lecture Notes in Computer Science; Duval, E., Klamma, R., Wolpers, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 4753, pp. 432–437. ISBN 978-3-540-75195-3. [Google Scholar]
- Chamberlin, D.D. Early History of SQL. IEEE Ann. Hist. Comput. 2012, 34, 78–82. [Google Scholar] [CrossRef]
- Howard, R.A. Decision analysis: Applied decision theory. In Proceedings of the Fourth International Conference on Operational Research; Hertz, D.B., Melese, J., Eds.; John Wiley & Sons Inc.: Boston, MA, USA, 1966; pp. 55–71. [Google Scholar]
- Cinelli, M.; Kadziński, M.; Gonzalez, M.; Słowiński, R. How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega 2020, 96, 102261. [Google Scholar] [CrossRef] [PubMed]
- Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria method selection. Omega 2019, 86, 107–124. [Google Scholar] [CrossRef]
- Multiple Criteria Decision Analysis—State of the Art Surveys; Greco, S.; Ehrgott, M.; Figueira, J.R. (Eds.) Springer Science+Business Media: New York, NY, USA, 2016; ISBN 978-1-493-93094-4. [Google Scholar]
- Keeny, R.L.; Raiffa, H. Decisions with Multiple Objectives: Preference and Value Trade-Offs; J. Wiley & Sons: New York, NY, USA, 1976; ISBN 978-0-471-46510-2. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Roy, B. Classement et choix en présence de points de vue multiples (la méthode ELECTRE). Rev. Fr. D’inform. Rech. Opér. (RIRO) 1968, 8, 57–75. [Google Scholar]
- Brans, J.P.; Vincke, P. A Preference Ranking Organisation Method: The PROMETHEE Method for MCDM. Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef]
- Vincke, P. Multicriteria Decision-Aid; Wiley: Hoboken, NJ, USA, 1992; ISBN 978-0-471-93184-3. [Google Scholar]
- Wikarek, J.; Bzdyra, K. A declarative decision support framework for scheduling groups of orders. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), Gdansk, Poland, 11–14 September 2016; pp. 733–740. [Google Scholar]
- Sitek, P. A Declarative Approach to Decision Support in Sustainable Supply Chain Problems. In Advances in Intelligent Systems and Computing, Proceedings of the Distributed Computing and Artificial Intelligence, 12th International Conference Salamanca, Spain, 3–5 June 2015; Omatu, S., Malluhi, Q.M., Gonzalez, S.R., Bocewicz, G., Bucciarelli, E., Giulioni, G., Iqba, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 373, pp. 331–339. [Google Scholar]
- Zhang, M.; Ranjan, R.; Nepal, S.; Menzel, M.; Haller, A. A Declarative Recommender System for Cloud Infrastructure Services Selection. In Economics of Grids, Clouds, Systems, and Services (GECON) 2012; Lecture Notes in Computer Science; Vanmechelen, K., Altmann, J., Rana, O.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7714. [Google Scholar]
- Bohanec, M. DEX (Decision EXpert): A Qualitative Hierarchical Multi-criteria Method. In Multiple Criteria Decision Making—Studies in Systems, Decision and Control; Kulkarni, A.J., Ed.; Springer: Singapore, 2022; Volume 407, pp. 39–78. ISBN 978-981-16-7414-3. [Google Scholar]
- Berčič, T.; Bohanec, M.; Ažman Momirski, L. Integrating Multi-Criteria Decision Models in Smart Urban Planning: A Case Study of Architectural and Urban Design Competitions. Smart Cities 2024, 7, 786–805. [Google Scholar] [CrossRef]
- Chondrogianni, D.; Stephanedes, Y.J.; Saranti, P.G.I. Multiple-Criteria Decision Analysis of Urban Planning Methods towards Resilient Open Urban Spaces—Mobility, Knowledge and Innovation Hubs in Urban and Regional Development. In Proceedings of the REAL CORP 2022, 27th International Conference on Urban Development, Regional Planning and Information Society, Vienna, Austria, 14–16 November 2022; pp. 505–512. [Google Scholar]
- ENVI-Met. Available online: https://envi-met.com (accessed on 1 December 2024).
- Bottero, M.; Assumma, V.; Caprioli, C.; Dell’Ovo, M. Decision making in urban development: The application of a hybrid evaluation method for a critical area in the city of Turin (Italy). Sustain. Cities Soc. 2021, 72, 103028. [Google Scholar] [CrossRef]
- Tan, T.; Mills, G.; Papadonikolaki, E.; Liu, Z. Combining multi-criteria decision making (MCDM) methods with building information modelling (BIM): A review. Autom. Constr. 2021, 121, 103451. [Google Scholar] [CrossRef]
- Bousquet, M.; Kuller, M.; Lacroix, S.; Vanrolleghem, P.A. A critical review of multicriteria decision analysis practices in planning of urban green spaces and nature-based solutions. Blue-Green Syst. 2023, 5, 200. [Google Scholar] [CrossRef]
- Sideris, N.; Bardis, G.; Voulodimos, A.; Miaoulis, G.; Ghazanfarpour, D. Using Random Forests on Real-World City Data for Urban Planning in a Visual Semantic Decision Support System. Sensors 2019, 19, 2266. [Google Scholar] [CrossRef] [PubMed]
- Sideris, N.; Bardis, G.; Voulodimos, A.; Miaoulis, G.; Ghazanfarpour, D. Enhancing Urban Data Analysis: Leveraging Graph-Based Convolutional Neural Networks for a Visual Semantic Decision Support System. Sensors 2024, 24, 1335. [Google Scholar] [CrossRef] [PubMed]
- Lolli, F.; Balugani, E.; Ishizaka, A.; Gamberini, R.; Butturi, M.A.; Marinello, S.; Rimini, B. On the elicitation of criteria weights in PROMETHEE-based ranking methods for a mobile application. Expert Syst. Appl. 2019, 120, 217–227. [Google Scholar] [CrossRef]
- Barron, F.H.; Barrett, B.E. Decision quality using ranked attribute weights. Manag. Sci. 1996, 42, 1515–1523. [Google Scholar] [CrossRef]
- Liu, D.; Li, T.; Liang, D. An integrated approach towards modeling ranked weights. Comput. Ind. Eng. 2020, 147, 106629. [Google Scholar] [CrossRef]
- Research—Data GrandLyon. Available online: https://data.grandlyon.com/portail/en/recherche (accessed on 1 December 2024).
Function Graph | Function Definition | DM-Defined Parameters |
---|---|---|
- | ||
p | ||
p | ||
q, p | ||
q, p | ||
s |
Decision Parameter | Decision Methodology Entity | DM’s Action |
---|---|---|
Criteria Weights | Definition of values | |
Generalized Criterion Function | Choice of function | |
Indifference/Weak Preference Threshold (dependent on function choice) | q | Definition of value (dependent on function choice) |
Weak/Strong Preference Threshold (dependent on function choice) | pws | Definition of value (dependent on function choice) |
Indifference/Preference Threshold (dependent on function choice) | pip | Definition of value (dependent on function choice) |
Inflection Point of Gaussian Function (dependent on function choice) | s | Definition of value (dependent on function choice) |
Methodology Parameter | Declarative Object | Declarative Relation(s) | Declarative Property/Ies |
---|---|---|---|
criterion weight | criterion | muchMoreImportant moreImportant lessImportant muchLessImportant equallyImportant | crucial major average minor negligible (hierarchical) |
generalized criterion function | comparativePerformanceInterpretation | stepped linear non-linear weak&strong single strict | |
q (indifference to weak preference threshold) | comparativeIWThreshold | early late wide narrow | |
pws (weak to strong preference threshold) | comparativeWSThreshold | early late wide narrow | |
pip (indifference to preference threshold) | comparativeIPThreshold | early late wide narrow | |
s (inflection point of Gaussian function) | strict |
DM-Assigned Declarative Property | Translation into Declarative Relations (Row Criterion Column Criterion) | ||||
---|---|---|---|---|---|
Crucial | Major | Average | Minor | Negligible | |
crucial | equally Important | more Important | notablyMore Important | considerably MoreImportant | vastlyMore Important |
major | lessImportant | equally Important | moreImportant | notablyMore Important | considerably MoreImportant |
average | notablyLess Important | lessImportant | equally Important | moreImportant | notablyMore Important |
minor | considerably LessImportant | notablyLess Important | lessImportant | equally Important | moreImportant |
negligible | vastlyLess Important | considerablyLess Important | notablyLess Important | less Important | equally Important |
Declarative Relation Modifier | Implied Alternative Ratios |
---|---|
vastlyMoreImportant | Scenario A: 9/1, Scenario B: 7/1 |
considerablyMoreImportant | Scenario A: 7/1, Scenario B: 5/1 |
notablyMoreImportant | Scenario A: 5/1, Scenario B: 3/1 |
moreImportant | Scenario A: 3/1, Scenario B: 2/1 |
equallyImportant | Scenario A and B: 1/1 |
Declarative Properties | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Generalized Criterion Function | Step | Linear | Non-Linear | Weak & Strong | Single | Strict | Early | Late | Narrow | Wide |
Type 1. | ✓ | ✓ | ||||||||
Type 2. | ✓ | ✓ | ✓ | ✓ | ||||||
Type 3. | ✓ | ✓ | ✓ | ✓ | ||||||
Type 4. | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Type 5. | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Type 6. | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Declarative Property | Alternative Values |
---|---|
early | pip = 0.15/pip = 0.3 (single threshold) |
late | pip = 0.7/pip = 0.85 (single threshold) |
neither early nor late | pip = 0.4/pip = 0.6 (single threshold) |
narrow (positioning implied by early, late, or none) | pws − q = 0.1 early: q = 0.1, pws = 0.2/q = 0.2, pws = 0.3 late: q = 0.7, pws = 0.8/q = 0.8, pws = 0.9 none: q = 0.45, pws = 0.55 |
wide (positioning implied by early, late, or none) | pws − q = 0.7 early: q = 0, pws = 0.7/q = 0.1, pws = 0.8 late: q = 0.2, pws = 0.9/q = 0.3, pws = 1 none: q = 0.15, pws = 0.85 |
neither narrow nor wide | pws − q = 0.4 early: q = 0, pws = 0.4/q = 0.1, pws = 0.5 late: q = 0.5, pws = 0.9/q = 0.6 pws = 1 none: q = 0.3, pws = 0.7 |
weak&strong non-linear |
Feature | Declarative Property |
---|---|
F5—Number of spots of tourist interest (1000 m) | crucial |
F6—Distance to nearest spot of tourist interest | average |
F7—Building area (in m2) | average |
F4—Distance from nearest ATM | negligible |
Feature A | Declarative Relation | Feature B |
---|---|---|
F7—Building area (in m2) | vastlyMoreImportant | F3—Number of ATMs at distance of 1000 m |
F7—Building area (in m2) | notablyMoreImportant | F2—Distance to nearest next parking |
F7—Building area (in m2) | notablyMoreImportant | F1—Number of other parking places in area (1000 m) |
F1 | F2 | F3 | F4 | F5 | F6 | F7 | |
---|---|---|---|---|---|---|---|
F1 | 1 | 1 | 1 | 1 | 1 | 1 | 1/5 or 1/3 |
F2 | 1 | 1 | 1 | 1 | 1 | 1 | 1/5 or 1/3 |
F3 | 1 | 1 | 1 | 1 | 1 | 1 | 1/9 or 1/7 |
F4 | 1 | 1 | 1 | 1 | 1/5 or 1/3 | 1/5 or 1/3 | 1/5 or 1/3 |
F5 | 1 | 1 | 1 | 5 or 3 | 1 | 3 or 2 | 3 or 2 |
F6 | 1 | 1 | 1 | 5 or 3 | 1/5 or 1/3 | 1 | 1 |
F7 | 5 or 3 | 5 or 3 | 9 or 7 | 5 or 3 | 1/5 or 1/3 | 1 | 1 |
Declarative Parameter | Scenario 1 Value | Scenario 2 Value | Scenario 3 Value | Scenario 4 Value |
---|---|---|---|---|
vastlyMoreImportant | 7 | 7 | 9 | 9 |
notablyMoreImportant | 3 | 3 | 5 | 5 |
early | pip = 0.15 | pip = 0.3 | pip = 0.15 | pip = 0.3 |
linear, single | Type 3 | Type 3 | Type 3 | Type 3 |
t: Sample ID | Class | ||||||
---|---|---|---|---|---|---|---|
79 | positive | 0.744 | 0.153 | 0.592 | 1 | 0.652 | 2 |
101 | positive | 0.699 | 0.135 | 0.564 | 5 | 0.391 | 9 |
t: Sample ID | Class | ||||||
---|---|---|---|---|---|---|---|
79 | positive | 0.670 | 0.125 | 0.545 | 2 | 0.652 | 2 |
80 | positive | 0.381 | 0.095 | 0.286 | 11 | 0.358 | 12 |
85 | positive | 0.703 | 0.146 | 0.557 | 1 | 0.659 | 1 |
101 | positive | 0.497 | 0.101 | 0.396 | 9 | 0.391 | 9 |
t: Sample ID | Class | ||||||
---|---|---|---|---|---|---|---|
79 | positive | 0.781 | 0.131 | 0.650 | 1 | 0.662 | 2 |
101 | positive | 0.720 | 0.120 | 0.600 | 8 | 0.360 | 10 |
t: Sample ID | Class | ||||||
---|---|---|---|---|---|---|---|
44 | positive | 0.710 | 0.109 | 0.600 | 3 | 0.501 | 5 |
79 | positive | 0.709 | 0.107 | 0.602 | 2 | 0.662 | 2 |
80 | positive | 0.386 | 0.087 | 0.299 | 12 | 0.326 | 12 |
85 | positive | 0.746 | 0.125 | 0.620 | 1 | 0.670 | 1 |
101 | positive | 0.504 | 0.090 | 0.414 | 10 | 0.360 | 10 |
ID | Positive/Negative | Sc.1 Net Flow | Sc. 1 Rank | Sc.2 Net Flow | Sc.2 Rank | Sc.3 Net Flow | Sc.3 Rank | Sc.4 Net Flow | Sc.4 Rank |
---|---|---|---|---|---|---|---|---|---|
8 | positive | 0.299 | 12 | 0.270 | 12 | 0.342 | 12 | 0.304 | 11 |
19 | positive | 0.279 | 15 | ||||||
28 | positive | 0.527 | 9 | 0.429 | 8 | 0.582 | 9 | 0.478 | 8 |
29 | positive | 0.559 | 7 | 0.497 | 5 | 0.616 | 6 | 0.551 | 5 |
30 | positive | 0.568 | 3 | 0.486 | 6 | 0.624 | 4 | 0.538 | 6 |
31 | positive | 0.249 | 15 | 0.179 | 14 | ||||
44 | positive | 0.589 | 2 | 0.544 | 3 | 0.643 | 2 | 0.600 | 3 |
60 | positive | 0.258 | 14 | 0.168 | 15 | 0.290 | 14 | 0.184 | 14 |
64 | positive | 0.176 | 15 | ||||||
79 | positive | 0.592 | 1 | 0.545 | 2 | 0.650 | 1 | 0.602 | 2 |
80 | positive | 0.479 | 11 | 0.286 | 11 | 0.507 | 11 | 0.299 | 12 |
85 | positive | 0.560 | 6 | 0.557 | 1 | 0.623 | 5 | 0.620 | 1 |
86 | positive | 0.566 | 4 | 0.518 | 4 | 0.625 | 3 | 0.575 | 4 |
96 | positive | 0.524 | 10 | 0.382 | 10 | 0.575 | 10 | 0.420 | 9 |
99 | positive | 0.556 | 8 | 0.443 | 7 | 0.614 | 7 | 0.494 | 7 |
101 | positive | 0.564 | 5 | 0.396 | 9 | 0.600 | 8 | 0.414 | 10 |
329 | negative | 0.262 | 13 | 0.240 | 13 | 0.303 | 13 | 0.274 | 13 |
Feature | Declarative Property |
---|---|
F2—Distance to nearest next parking | crucial |
F6—Distance to nearest spot of tourist interest | crucial |
F1—Number of other parking places in area (1000 m) | major |
F7—Building area (in m2) | major |
F3—Number of ATMs at distance of 1000 m | negligible |
F4—Distance from nearest ATM | negligible |
F5—Number of spots of tourist interest | negligible |
F1 | F2 | F3 | F4 | F5 | F6 | F7 | |
---|---|---|---|---|---|---|---|
F1 | 1 | 1/3 or 1/2 | 7 or 5 | 7 or 5 | 7 or 5 | 1/3 or 1/2 | 1 |
F2 | 3 or 2 | 1 | 9 or 7 | 9 or 7 | 9 or 7 | 1 | 3 or 2 |
F3 | 1/7 or 1/5 | 1/9 or 1/7 | 1 | 1 | 1 | 1/9 or 1/7 | 1/7 or 1/5 |
F4 | 1/7 or 1/5 | 1/9 or 1/7 | 1 | 1 | 1 | 1/9 or 1/7 | 1/7 or 1/5 |
F5 | 1/7 or 1/5 | 1/9 or 1/7 | 1 | 1 | 1 | 1/9 or 1/7 | 1/7 or 1/5 |
F6 | 3 or 2 | 1 | 9 or 7 | 9 or 7 | 9 or 7 | 1 | 3 or 2 |
F7 | 1 | 1/3 or 1/2 | 7 or 5 | 7 or 5 | 7 or 5 | 1/3 or 1/2 | 1 |
Declarative Parameter | Scenario 1 Values | Scenario 2 Values | Scenario 3 Values | Scenario 4 Values |
---|---|---|---|---|
vastlyMoreImportant | 7 | 7 | 9 | 9 |
considerablyMoreImportant | 5 | 5 | 7 | 7 |
notablyMoreImportant | 3 | 3 | 5 | 5 |
moreImportant | 2 | 2 | 3 | 3 |
weak&strong, early | q = 0 pws = 0.4 | q = 0.1 pws = 0.5 | q = 0 pws = 0.4 | q = 0.1 pws = 0.5 |
stepped, weak&strong | Type 4 | Type 4 | Type 4 | Type 4 |
t: Sample ID | Class | ||||||
---|---|---|---|---|---|---|---|
27 | positive | 0.333 | 0.189 | 0.144 | 5 | 0.482 | 19 |
44 | positive | 0.413 | 0.224 | 0.189 | 1 | 0.533 | 3 |
54 | positive | 0.341 | 0.209 | 0.131 | 7 | 0.466 | 42 |
80 | positive | 0.343 | 0.213 | 0.131 | 9 | 0.473 | 30 |
87 | positive | 0.332 | 0.186 | 0.147 | 4 | 0.500 | 10 |
t: Sample ID | Class | ||||||
---|---|---|---|---|---|---|---|
44 | positive | 0.324 | 0.157 | 0.168 | 2 | 0.533 | 3 |
47 | positive | 0.191 | 0.090 | 0.101 | 9 | 0.495 | 14 |
85 | positive | 0.330 | 0.199 | 0.131 | 5 | 0.576 | 1 |
787 | negative | 0.225 | 0.111 | 0.114 | 6 | 0.520 | 4 |
443 | negative | 0.288 | 0.115 | 0.172 | 1 | 0.544 | 2 |
t: Sample ID | Class | ||||||
---|---|---|---|---|---|---|---|
14 | positive | 0.411 | 0.260 | 0.151 | 3 | 0.511 | 10 |
27 | positive | 0.329 | 0.195 | 0.133 | 4 | 0.488 | 20 |
35 | positive | 0.411 | 0.301 | 0.110 | 11 | 0.514 | 8 |
44 | positive | 0.399 | 0.233 | 0.166 | 2 | 0.531 | 3 |
54 | positive | 0.336 | 0.218 | 0.117 | 8 | 0.473 | 45 |
75 | positive | 0.412 | 0.369 | 0.043 | 57 | 0.434 | 140 |
87 | positive | 0.325 | 0.195 | 0.130 | 6 | 0.505 | 15 |
758 | negative | 0.331 | 0.200 | 0.131 | 5 | 0.510 | 12 |
443 | negative | 0.395 | 0.227 | 0.167 | 1 | 0.556 | 2 |
t: Sample ID | Class | ||||||
---|---|---|---|---|---|---|---|
44 | positive | 0.306 | 0.162 | 0.144 | 2 | 0.531 | 3 |
47 | positive | 0.198 | 0.094 | 0.104 | 7 | 0.508 | 13 |
81 | positive | 0.313 | 0.327 | −0.015 | 127 | 0.447 | 112 |
85 | positive | 0.309 | 0.203 | 0.106 | 6 | 0.565 | 1 |
787 | negative | 0.229 | 0.118 | 0.111 | 5 | 0.530 | 4 |
443 | negative | 0.298 | 0.124 | 0.174 | 1 | 0.556 | 2 |
601 | negative | 0.214 | 0.116 | 0.098 | 8 | 0.519 | 7 |
ID | Positive/Negative | Sc.1 Net Flow | Sc. 1 Rank | Sc.2 Net Flow | Sc.2 Rank | Sc.3 Net Flow | Sc.3 Rank | Sc.4 Net Flow | Sc.4 Rank |
---|---|---|---|---|---|---|---|---|---|
14 | positive | 0.159 | 3 | 0.151 | 3 | ||||
18 | positive | 0.117 | 9 | ||||||
27 | positive | 0.144 | 5 | 0.133 | 4 | ||||
34 | positive | 0.133 | 6 | 0.128 | 7 | ||||
35 | positive | 0.11 | 11 | ||||||
44 | positive | 0.189 | 1 | 0.168 | 2 | 0.166 | 2 | 0.144 | 2 |
47 | positive | 0.101 | 9 | 0.104 | 7 | ||||
54 | positive | 0.131 | 7 | 0.117 | 8 | ||||
75 | positive | 0.043 | 57 | ||||||
79 | positive | 0.105 | 8 | ||||||
80 | positive | 0.131 | 9 | 0.107 | 7 | 0.088 | 10 | ||
81 | positive | −0.015 | 127 | ||||||
85 | positive | 0.131 | 5 | 0.106 | 6 | ||||
87 | positive | 0.147 | 4 | 0.132 | 4 | 0.13 | 6 | ||
101 | positive | 0.138 | 3 | 0.118 | 4 | ||||
129 | negative | 0.127 | 10 | 0.117 | 10 | 0.119 | 3 | ||
443 | negative | 0.163 | 2 | 0.172 | 1 | 0.167 | 1 | 0.174 | 1 |
601 | negative | 0.097 | 10 | 0.098 | 8 | ||||
758 | negative | 0.131 | 8 | 0.131 | 5 | 0.088 | 9 | ||
787 | negative | 0.114 | 6 | 0.111 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardis, G. A Declarative Modeling Framework for Intuitive Multiple Criteria Decision Analysis in a Visual Semantic Urban Planning Environment. Electronics 2024, 13, 4845. https://doi.org/10.3390/electronics13234845
Bardis G. A Declarative Modeling Framework for Intuitive Multiple Criteria Decision Analysis in a Visual Semantic Urban Planning Environment. Electronics. 2024; 13(23):4845. https://doi.org/10.3390/electronics13234845
Chicago/Turabian StyleBardis, Georgios. 2024. "A Declarative Modeling Framework for Intuitive Multiple Criteria Decision Analysis in a Visual Semantic Urban Planning Environment" Electronics 13, no. 23: 4845. https://doi.org/10.3390/electronics13234845
APA StyleBardis, G. (2024). A Declarative Modeling Framework for Intuitive Multiple Criteria Decision Analysis in a Visual Semantic Urban Planning Environment. Electronics, 13(23), 4845. https://doi.org/10.3390/electronics13234845