Application and Optimization of a Fast Non-Local Means Noise Reduction Algorithm in Pediatric Abdominal Virtual Monoenergetic Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Contrast Agent Samples and Pediatric Abdominal Phantom Setup
2.2. The Acquisition Parameters of Computed Tomography Images
2.3. Fast Non-Local Means Noise Reduction Algorithm Modeling
2.4. Image Quality Evaluations
3. Results
3.1. The Optimization of the Fast Non-Local Means Noise Reduction Algorithm
3.2. The Comparative Evaluation of the Optimized Fast Non-Local Means Noise Reduction Algorithm with Conventional Algorithms
3.3. The Visual Evaluation of the Optimized Fast Non-Local Means Noise Reduction Algorithm with Conventional Algorithms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martin, C.J. Optimisation in general radiography. Biomed. Imaging Interv. J. 2007, 3, e18. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-operation and Development (OECD). Computed Tomography (CT) Exam. 2021. Available online: https://data.oecd.org/healthcare/computed-tomography-ct-exams.htm (accessed on 29 November 2023).
- Chodick, G.; Kim, K.P.; Shwarz, M.; Horev, G.; Shalev, V.; Ron, E. Radiation risks from pediatric computed tomography scanning. Pediatr. Endocrinol. Rev. 2009, 7, 29–36. [Google Scholar] [PubMed]
- Dupuy, D.; Costello, P.; Lewis, D.; Jenkins, R. Abdominal CT findings after liver transplantation in 66 patients. AJR Am. J. Roentgenol. 1991, 156, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
- Al Mahrooqi, K.M.S.; Ng, C.K.C.; Sun, Z. Pediatric computed tomography dose optimization strategies: A literature review. J. Med. Imaging Radiat. Sci. 2015, 46, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Davros, W.; Pozzuto, J.; Reid, J. Optimization of kilovoltage and tube current–exposure time product based on abdominal circumference: An oval phantom study for pediatric abdominal CT. AJR Am. J. Roentgenol. 2012, 199, 670–676. [Google Scholar] [CrossRef]
- Andreucci, M.; Faga, T.; De Sarro, G.; Michael, A. The toxicity of iodinated radiographic contrast agents in the clinical practice. J. Nephrol. Adv. 2015, 1, 6–41. [Google Scholar] [CrossRef]
- Thomson, K.R.; Varma, D.K. Safe use of radiographic contrast media. Aust. Prescr. 2010, 33, 19–22. [Google Scholar] [CrossRef]
- Kreisler, B. Photon counting Detectors: Concept, technical Challenges, and clinical outlook. Eur. J. Rad. 2022, 149, 110229. [Google Scholar] [CrossRef]
- Rajendran, K.; Voss, B.A.; Zhou, W.; Tao, S.; DeLone, D.R.; Lane, J.I.; Weaver, J.M.; Carlson, M.L.; Fletcher, J.G.; McCollough, C.H.; et al. Dose reduction for sinus and temporal bone imaging using photon-counting detector CT with an additional tin filter. Invest. Rad. 2020, 55, 91–100. [Google Scholar] [CrossRef]
- Jungblut, L.; Blüthgen, C.; Polacin, M.; Messerli, M.; Schmidt, B.; Euler, A.; Alkadhi, H.; Frauenfelder, T.; Martini, K. First performance evaluation of an artificial intelligence-based computer-aided detection system for pulmonary nodule evaluation in dual-source photon-counting detector CT at different low-dose levels. Invest. Rad. 2022, 57, 108–114. [Google Scholar] [CrossRef]
- Aran, S.; Shaqdan, K.W.; Abujudeh, H.H. Dual-energy computed tomography (DECT) in emergency radiology: Basic principles, techniques, and limitations. Emerg. Radiol. 2014, 21, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Riederer, S.J.; Mistretta, C.A. Selective iodine imaging using K-edge energies in computerized x-ray tomography. Med. Phys. 1977, 4, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Sato, E.; Oda, Y.; Abudurexiti, A.; Hagiwara, O.; Matsukiyo, H.; Osawa, A.; Enomoto, T.; Watanabe, M.; Kusachi, S.; Sato, S.; et al. Demonstration of enhanced iodine K-edge imaging using an energy-dispersive X-ray computed tomography system with a 25 mm/s-scan linear cadmium telluride detector and a single comparator. Appl. Radiat. Isot. 2012, 70, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Kim, K.; Lee, Y. Effect of iodine concentration reduction by comparison of virtual monoenergetic image quality with dual-energy computed tomography. Appl. Radiat. Isot. 2023, 200, 110967. [Google Scholar] [CrossRef] [PubMed]
- Sugrue, G.; Walsh, J.P.; Zhang, Y.; Niu, B.; Macri, F.; Khasanova, E.; Metwally, O.; Murray, N.; Nicolaou, S. Virtual monochromatic reconstructions of dual energy CT in abdominal trauma: Optimization of energy level improves pancreas laceration conspicuity and diagnostic confidence. Emerg. Radiol. 2021, 28, 1–7. [Google Scholar] [CrossRef]
- Wichmann, J.L.; Gillott, M.R.; De Cecco, C.N.; Mangold, S.; Varga-Szemes, A.; Yamada, R.; Otani, K.; Canstein, C.; Fuller, S.R.; Vogl, T.J.; et al. Dual-energy computed tomography angiography of the lower extremity runoff: Impact of noise-optimized virtual monochromatic imaging on image quality and diagnostic accuracy. Invest. Radiol. 2016, 51, 139–146. [Google Scholar] [CrossRef]
- Zeng, Y.; Geng, D.; Zhang, J. Noise-optimized virtual monoenergetic imaging technology of the third-generation dual-source computed tomography and its clinical applications. Imaging Med. Surg. 2021, 11, 4627–4643. [Google Scholar] [CrossRef]
- Hanson, G.J.; Michalak, G.J.; Childs, R.; McCollough, B.; Kurup, A.N.; Hough, D.M.; Frye, J.M.; Fidler, J.L.; Venkatesh, S.K.; Leng, S.; et al. Low kV versus dual-energy virtual monoenergetic CT imaging for proven liver lesions: What are the advantages and trade-offs in conspicuity and image quality? A pilot study. Abdom. Radiol. 2018, 43, 1404–1412. [Google Scholar] [CrossRef]
- Deng, G.; Cahill, L.W. An adaptive Gaussian filter for noise reduction and edge detection. In Proceedings of the IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 30 October–6 November 1993; Volume 1993, pp. 1615–1619. [Google Scholar] [CrossRef]
- Hoeher, P.; Kaiser, S.; Robertson, P. Two-dimensional pilot-symbol-aided channel estimation by Wiener filtering. In Proceedings of the 1997 IEEE International Conference on Acoustics [Speech], Munich, Germany, 21–24 April 1997; Volume 3, pp. 1845–1848. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 2, pp. 60–65. [Google Scholar] [CrossRef]
- Darbon, J.; Cunha, A.; Chan, T.F.; Osher, S.; Jensen, G.J. Fast nonlocal filtering applied to electron cryomicroscopy. In Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; Vol 2008; pp. 1331–1334. [Google Scholar] [CrossRef]
- Dauwe, A.; Goossens, B.; Luong, H.Q.; Philips, W. A fast non-local image denoising algorithm. Image Process Algor. Syst. 2008, 6812, 324–331. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 2005, 4, 490–530. [Google Scholar] [CrossRef]
- Yan, J.; Schaefferkoetter, J.; Conti, M.; Townsend, D. A method to assess image quality for low-dose PET: Analysis of SNR, CNR, bias and image noise. Cancer Imaging 2016, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Doughty, M.J.; Aakre, B.M. Further analysis of assessments of the coefficient of variation of corneal endothelial cell areas from specular microscopic images. Clin. Exp. Optom. 2008, 91, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Martin, R. Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE Trans. Speech Audio Process. 2001, 9, 504–512. [Google Scholar] [CrossRef]
- Jo, Y.; Kim, J.; Park, C.H.; Lee, J.W.; Hur, J.H.; Yang, D.H.; Lee, B.Y.; Im, D.J.; Hong, S.J.; Kim, E.Y.; et al. Quantitative imaging in pediatric hepatobiliary disease. Korean J. Radiol. 2019, 20, 1342–1357. [Google Scholar] [CrossRef]
- Cannella, R.; Zins, M.; Brancatelli, G. ESR Essentials: Diagnosis of hepatocellular carcinoma—Practice recommendations by ESGAR. Eur. Radoil. 2024, 34, 2127–2139. [Google Scholar] [CrossRef]
- Kaller, M.O.; An, J. Contrast Agent Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- D’Angelo, T.; Cicero, G.; Mazziotti, S.; Ascenti, G.; Albrecht, M.H.; Martin, S.S.; Othman, A.E.; Vogl, T.J.; Wichmann, J.L. Dual energy computed tomography virtual monoenergetic imaging: Technique and clinical applications. Br. J. Radiol. 2019, 92, 20180546. [Google Scholar] [CrossRef]
- Li, G.; Rednam, N.; Kundra, V. Low KeV virtual monoenergetic images for detecting low dose iodine-or alternative Gd-based IV contrast agents. Heliyon 2024, 10, e35210. [Google Scholar] [CrossRef]
- Tang, L.; Fang, Z. Edge and contrast preserving in total variation image denoising. EURASIP J. Adv. Signal Process. 2016, 2016, 13. [Google Scholar] [CrossRef]
- Shim, J.; Yoon, M.; Lee, Y. Comparison of filtered back projection with fast non-local means denoising approach and iterative reconstruction in pediatric chest CT image using 3D printed lung nodules. J. Korean Phys. Soc. 2023, 82, 1114–1123. [Google Scholar] [CrossRef]
- Al-Baldawi, Y.; Große Hokamp, N.G.; Haneder, S.; Steinhauser, S.; Püsken, M.; Persigehl, T.; Maintz, D.; Wybranski, C. Virtual mono-energetic images and iterative image reconstruction: Abdominal vessel imaging in the era of spectral detector CT. Clin. Rad. 2020, 75, 641.e9–641.e18. [Google Scholar] [CrossRef] [PubMed]
- Große Hokamp, N.; Höink, A.J.; Doerner, J.; Jordan, D.W.; Pahn, G.; Persigehl, T.; Maintz, D.; Haneder, S. Assessment of arterially hyper-enhancing liver lesions using virtual monoenergetic images from spectral detector CT: Phantom and patient experience. Abdom. Radiol. (NY) 2018, 43, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sejdić, E. Radiological images and machine learning: Trends, perspectives, and prospects. Comput. Biol. Med. 2019, 108, 354–370. [Google Scholar] [CrossRef] [PubMed]
- Azer, S.A. Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review. World J. Gastrointest. Oncol. 2019, 11, 1218–1230. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, Y.H.; Cho, Y.J.; Lee, S.B.; Cheon, J.E.; Kim, W.S.; Ahn, C.K.; Kim, J.H. Noise reduction approach in pediatric abdominal CT combining deep learning and dual-energy technique. Eur. Radiol. 2021, 31, 2218–2226. [Google Scholar] [CrossRef]
- Lestra, T.; Mulé, S.; Millet, I.; Carsin-Vu, A.; Taourel, P.; Hoeffel, C. Applications of dual energy computed tomography in abdominal imaging. Diagn. Interv. Imaging 2016, 97, 593–603. [Google Scholar] [CrossRef]
- Wortman, J.R.; Bunch, P.M.; Fulwadhva, U.P.; Bonci, G.A.; Sodickson, A.D. Dual-energy CT of incidental findings in the abdomen: Can we reduce the need for follow-up imaging? AJR Am. J. Roentgenol. 2016, 207, W58–W68. [Google Scholar] [CrossRef]
- Smith, E.A.; Dillman, J.R. Current role of body MRI in pediatric oncology. Pediatr. Radiol. 2016, 46, 873–880. [Google Scholar] [CrossRef]
- Kang, Y.; Hwang, S.H.; Han, K.; Shin, H.J. Comparison of image quality, contrast administration, and radiation doses in pediatric abdominal dual-layer detector dual-energy CT using propensity score matching analysis. Eur. J. Radiol. 2023, 169, 111177. [Google Scholar] [CrossRef]
- Rajakumar, S.; Sreedhar, P.S.S.; Kamatchi, S.; Tamilmani, G. Gray wolf optimization and image enhancement with NLM Algorithm for multimodal medical fusion imaging system. Biomed. Signal Process. Control. 2023, 85, 104950. [Google Scholar] [CrossRef]
Scan Parameter | Value | |||
---|---|---|---|---|
CTDIvol (mGy) | 0.8 | |||
Pitch | 1 | |||
Rotation time (sec) | 0.25 | |||
Reconstruction method | ADMIRE (strength 3 + Br40) | |||
Slice thickness/increment (mm) | 3/3 | |||
Scanmethod | SECT | kV | 70 | |
mAs | 89 | |||
DECT | kV | A tube | 70, 80, 90, 100 | |
B tube | 150 (Sn filter) | |||
mAs | A tube | 40, 22, 16, 14 | ||
B tube | 10, 11, 10, 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Park, J.; Shim, J.; Lee, Y. Application and Optimization of a Fast Non-Local Means Noise Reduction Algorithm in Pediatric Abdominal Virtual Monoenergetic Images. Electronics 2024, 13, 4684. https://doi.org/10.3390/electronics13234684
Kim H, Park J, Shim J, Lee Y. Application and Optimization of a Fast Non-Local Means Noise Reduction Algorithm in Pediatric Abdominal Virtual Monoenergetic Images. Electronics. 2024; 13(23):4684. https://doi.org/10.3390/electronics13234684
Chicago/Turabian StyleKim, Hajin, Juho Park, Jina Shim, and Youngjin Lee. 2024. "Application and Optimization of a Fast Non-Local Means Noise Reduction Algorithm in Pediatric Abdominal Virtual Monoenergetic Images" Electronics 13, no. 23: 4684. https://doi.org/10.3390/electronics13234684
APA StyleKim, H., Park, J., Shim, J., & Lee, Y. (2024). Application and Optimization of a Fast Non-Local Means Noise Reduction Algorithm in Pediatric Abdominal Virtual Monoenergetic Images. Electronics, 13(23), 4684. https://doi.org/10.3390/electronics13234684