Multibeam Cylindrical Conformal Array in the Presence of Enhanced Mutual Coupling
Abstract
:1. Introduction
2. Theory of Cylindrical Arrays
3. The Method for Analysis
3.1. Effect on Impedance Matching
3.2. Effect on the Radiation Pattern
3.3. Multibeam Capabilities
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Array factor |
CCA | Cylindrical conformal array |
CPPAR | Cylindrical polarimetric phased array radar |
EM | Electromagnetics |
EP | Element pattern |
GIS | Geographic Information System |
ITS | Intelligent transportation system |
OIR | Optical–infrared |
RS | Remote sensing |
References
- Zhu, J.; Wu, P.; Anumba, C.A. Semantics-Based Approach for Simplifying IFC Building Models to Facilitate the Use of BIM Models in GIS. Remote Sens. 2021, 13, 4727. [Google Scholar] [CrossRef]
- Ye, S.; Zhu, D.; Yao, X.; Zhang, N.; Fang, S.; Li, L. Development of a Highly Flexible Mobile GIS-Based System for Collecting Arable Land Quality Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4432–4441. [Google Scholar] [CrossRef]
- Earl, R.; Thomas, G.; Blackmore, B.S. The potential role of GIS in autonomous field operations. Comput. Electron. Agric. 2000, 25, 107–120. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Wang, C.; Zhuo, L.; Tian, Q.; Liang, X. Road Recognition From Remote Sensing Imagery Using Incremental Learning. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2993–3005. [Google Scholar] [CrossRef]
- Khechba, K.; Laamrani, A.; Dhiba, D.; Misbah, K.; Chehbouni, A. Monitoring and Analyzing Yield Gap in Africa through Soil Attribute Best Management Using Remote Sensing Approaches: A Review. Remote Sens. 2021, 13, 4602. [Google Scholar] [CrossRef]
- Kim, C.; Kim, S.; Jung, K. Adaptive Flow Control Using Movement Information in Mobile-Assisted Sensor Data Collection. IEEE Sens. J. 2020, 20, 12435–12446. [Google Scholar] [CrossRef]
- Yue, W.; Jiang, L.; Yang, X.; Gao, S.; Xie, Y.; Xu, T. Optical Design of a Common-Aperture Camera for Infrared Guided Polarization Imaging. Remote Sens. 2022, 14, 1620. [Google Scholar] [CrossRef]
- Ewan, L.; Al-Kaisy, A.; Veneziano, D. Remote Sensing of Weather and Road Surface Conditions: Is Technology Mature for Reliable Intelligent Transportation Systems Applications? Transp. Res. Rec. 2013, 2329, 8–16. [Google Scholar] [CrossRef]
- Mondal, T.; Debnath, R.; Roy, J.S.; Bhadra Chaudhuri, S.R. Phased array antenna design for intelligent transport systems. In Proceedings of the 2009 IEEE International Workshop on Antenna Technology, Santa Monica, CA, USA, 2–4 March 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Guntupalli, A.B.; Wu, K. Full-space scanning phased array system for future integrated high data rate communication over E-band and beyond. In Proceedings of the 2013 European Microwave Conference, Nuremberg, Germany, 9–11 October 2013; pp. 1607–1610. [Google Scholar]
- Warnick, K.F.; Maaskant, R.; Ivashina, M.V.; Davidson, D.B.; Jeffs, B.D. Phased Arrays for Radio Astronomy, Remote Sensing, and Satellite Communications; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Paul, B.; Chiriyath, A.R.; Bliss, D.W. Survey of RF Communications and Sensing Convergence Research. IEEE Access 2017, 5, 252–270. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, H.; Furukawa, T. Reliable Infrastructural Urban Traffic Monitoring via Lidar and Camer Fusion. SAE Int. J. Passenger Cars-Electr. Electr. Syst. 2017, 10, 173–180. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, L.; Li, Q.; Li, M.; Nüchter, A.; Wang, J. 3D LIDAR point cloud based intersection recognition for autonomous driving. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; pp. 456–461. [Google Scholar] [CrossRef]
- Barbagli, B.; Bencini, L.; Magrini, I.; Manes, G.; Manes, A.; Srl, N. A traffic monitoring and queue detection system based on an acoustic sensor network. Int. J. Adv. Netw. Serv. 2011, 4, 27–37. Available online: http://www.iariajournals.org (accessed on 11 August 2023).
- Seelan, S.K.; Laguette, S.; Casady, G.M.; Seielstad, G.A. Remote sensing applications for precision agriculture: A learning community approach. Remote Sens. Environ. 2003, 88, 157–169. [Google Scholar] [CrossRef]
- Sanchez, G.H.; Saito, M.; Schultz, G.G.; Eggett, D.L. Use of High-Resolution Data to Evaluate the Accuracy of Mean and 85th Percentile Approach Speeds Collected By Microwave Sensors. In Proceedings of the Transportation Research Board 96th Annual Meeting (TRB), Washington, DC, USA, 8–12 January 2017; pp. 1–17. Available online: https://trid.trb.org/view/1437310 (accessed on 1 September 2023).
- Karthikeyan, L.; Chawla, I.; Mishra Ashok, K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Mao, X.; Tang, S.; Wang, J.; Li, X.Y. iLight: Device-free passive tracking using wireless sensor networks. IEEE Sens. J. 2013, 13, 3785–3792. [Google Scholar] [CrossRef]
- Golbon-Haghighi, M.-H.; Saeidi-Manesh, H.; Zhang, G.F.; Zhang, Y. Pattern Synthesis for the Cylindrical Polarimetric Phased Array Radar (CPPAR). Prog. Electromagn. Res. M 2018, 66, 87–98. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Odat, E.; Shamma, J.S.; Claudel, C. Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1593–1606. [Google Scholar] [CrossRef]
- Schoebel, J.; Buck, T.; Reimann, M.; Ulm, M.; Schneider, M.; Jourdain, A.; Carchon, G.J.; Tilmans, H.A.C. Design considerations and technology assessment of phased-array antenna systems with RF MEMS for automotive radar applications. IEEE Trans. Microw. Theory Tech. 2005, 53, 1968–1975. [Google Scholar] [CrossRef]
- Agarwal, V.; Murali, N.V.; Chandramouli, C. A Cost-Effective Ultrasonic Sensor-Based Driver-Assistance System for Congested Traffic Conditions. IEEE Trans. Intell. Transp. Syst. 2009, 10, 486–498. [Google Scholar] [CrossRef]
- Xu, J.; Hong, W.; Zhang, H.; Wang, G.; Yu, Y.; Jiang, Z.H. An Array Antenna for Both Long and Medium-Range 77 GHz Automotive Radar Applications. IEEE Trans. Antennas Propag. 2017, 65, 7207–7216. [Google Scholar] [CrossRef]
- Zhu, B.; Sun, Y.; Zhao, J.; Zhang, S.; Zhang, P.; Song, D. Millimeter-Wave Radar in-the-Loop Testing for Intelligent Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 11126–11136. [Google Scholar] [CrossRef]
- Won, M.; Zhang, S.; Son, S.H. WiTraffic: Low-cost and non-intrusive traffic monitoring system using WiFi. In Proceedings of the 2017 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC, Canada, 31 July–3 August 2017; pp. 1–9. [Google Scholar]
- Haferkamp, M.; Al-Askary, M.; Dorn, D.; Sliwa, B.; Habel, L.; Schreckenberg, M.; Wietfeld, C. Radio-based traffic flow detection and vehicle classification for future smart cities. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar]
- Temiz, M.; Alsusa, E.; Danoon, L.; Zhang, Y. On the Impact of Antenna Array Geometry on Indoor Wideband Massive MIMO Networks. IEEE Trans. Antennas Propag. 2021, 69, 406–416. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Shi, Q.; Temiz, M.; El-Makadema, A.; Shi, J. A Foldable Tightly Coupled Crossed Rings Antenna Array of Ultrawide Bandwidth and Dual Polarization. IEEE Access 2022, 10, 86684–86695. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, Y.; Shi, Q.; Temiz, M.; El-Makadema, A. A Dual Slant-Polarized Cylindrical Array of Tightly Coupled Dipole Antennas. IEEE Access 2022, 10, 30858–30869. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Jin, Z.; Zhao, F.; Zhu, J. A Multibeam Cylindrically Conformal Slot Array Antenna Based on a Modified Rotman Lens. IEEE Trans. Antennas Propag. 2018, 66, 3441–3452. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, G.; Golbon-Haghighi, M.-H.; Saeidi-Manesh, H.; Herndon, M.; Pan, H. Initial Observations with Electronic and Mechanical Scans Using a Cylindrical Polarimetric Phased Array Radar. IEEE Geosci. Remote Sens. Lett. 2021, 18, 271–275. [Google Scholar] [CrossRef]
- Redmond, K.; Meier, J.; Karimkashi, S.; McCord, M.; Meier, I.; Zhang, G.; Palmer, R.; Zahrai, A.; Schmidt, D.; Doviak, R.J.; et al. Cylindrical Polarimetric Phased Array Radar: Hardware design and mobile demonstrator. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014. [Google Scholar] [CrossRef]
- Sureau, J.-C.; Keeping, K. Sidelobe control in cylindrical arrays. IEEE Trans. Antennas Propag. 1982, 30, 1027–1031. [Google Scholar] [CrossRef]
- Borgiotti, G.V.; Balzano, Q. Mutual coupling analysis of a conformal array of elements on a cylindrical surface. IEEE Trans. Antennas Propag. 1970, 18, 55–63. [Google Scholar] [CrossRef]
- Borgiotti, G.V. Conformal Arrays, Ch. 11. In The Handbook of Antenna Design; Davies, D.E.N., Rudge, A.W., Eds.; Peter Peregrinus: London, UK, 1983; Volume 2. [Google Scholar]
- Wang, Q.; He, Q.Q. An rrbitrary conformal array pattern synthesis method that include mutual coupling and platform effects. Prog. Electromagn. Res. 2010, 110, 297–311. [Google Scholar] [CrossRef]
- Kraus, J.D.; Marhefka, R.J. Antennas for All Applications; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bird, T.S. Mutual Coupling between Antennas; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Erturk, V.B.; Rojas, R.G. Efficient Analysis of Input Impedance and Mutual Coupling of Microstrip Antennas Mounted on Large Coated Cylinders. IEEE Trans. Antennas Propag. 2003, 51, 739–749. [Google Scholar] [CrossRef]
- Brown, A.D. (Ed.) Electronically Scanned Arrays MATLAB® Modeling and Simulation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Knott, P. Design of A Triple Patch Antenna Element for Double Curved Conformal Antenna Arrays. In Proceedings of the 2006 First European Conference on Antennas and Propagation, Nice, France, 6–10 November 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Braaten, B.D.; Roy, S.; Irfanullah, I.; Nariyal, S.; Anagnostou, D.E. Phase-Compensated Conformal Antennas for Changing Spherical Surfaces. IEEE Trans. Antennas Propag. 2014, 62, 1880–1887. [Google Scholar] [CrossRef]
- Geissler, M.; Woetzel, F.; Böttcher, M.; Korthoff, S.; Lauer, A.; Eube, M.; Wleklinski, M. Design and Test of An L-Band Phased Array for Maritime Satcom. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 2871–2875. Available online: https://ieeexplore.ieee.org/ (accessed on 12 October 2023).
- Quan, X.; Li, R.; Fan, Y.; Anagnostou, D.E. Analysis and Design of a 45° Slant-Polarized Omnidirectional Antenna. IEEE Trans. Antennas Propag. 2014, 62, 86–93. [Google Scholar] [CrossRef]
Sensing Technology | Principle of Operation | Disadvantages | Advantages |
---|---|---|---|
Cameras [13,14] | Image analysis | Affected by heavy rain, fog, sun and other bad weather, by the interference of light. | High horizontal resolution; can recognize lane lines, speed limit signs, and other traffic information, as well as pedestrians. |
Acoustic sensors [15,16] | Acoustic pressure measurement | Complex computations are necessary to eliminate impact of other sound sources. | Robust against light and weather variations; monitoring of multiple traffic lanes is possible. |
LIDARs [17,18] | Detection of reflected electromagnetic wave | The recognition of objects depends on the characteristics of objects in the database; difficult to identify lane lines. The distance ranging and speed measurement accuracy are low. Optical devices are easily polluted. | High resolution; sensitive response speed; not easily affected by ambient light; can recognize the contour of the object. |
Light sensors [19,20] | Light intensity measurement. | Sensitive to light and weather variations. Cleaning is necessary. | Monitoring of multiple traffic lanes is possible. Enables pedestrian and bicycle detection. Detection range is wide, |
Passive infrared sensors [21,22] | Infrared radiation measurement | Does not have the ability of angle detection; cannot complete stationary ranging; ranging is short and vulnerable to bad weather. | Can accurately identify organisms; low cost; can work at night. |
Ultrasonic sensors [23,24] | Detection of reflected sound waves | The angle cannot be identified; the detection range is short; the Doppler effect is obvious; the reliability is poor. | The hardware structure is simple; the cost is low; short distance measurement of high resolution. |
Integrated communication and sensing [12] | Measurement of received signal strength | Disturbed by road objects greatly; cannot recognize lane lines and road sign. | Strong anti-interference ability, high spatial resolution, long detection range, high reliability. Works 24/7; can work in bad weather conditions. |
Millimeter-wave automotive radar [25,26,27,28] | Measurement of frequency and waveform | Range and susceptibility to adverse weather conditions; complexity of signal processing; limited range. | Accurate distance measurement with shorter wavelength; improved object detection; high resolution; reduced interference. |
Element No. | Total Efficiency in dB (%) | |||||
---|---|---|---|---|---|---|
1 | 73 + j42.5 | NA | NA | NA | 73 + j42.5 | −0.6444 (86.21) |
3 | 73 + j42.5 | 26.5 + j19.6 | NA | NA | 126 + j81.7 | −1.7437 (66.93) |
5 | 73 + j42.5 | 26.5 + j19.6 | −12.53 − j29.93 | NA | 100.94 + j21.84 | −0.6154 (86.79) |
9 | 73 + j42.5 | 26.5 + j19.6 | −12.53 − j29.93 | −11.89 − j7.85 | 53.38 − j9.56 | −0.0416 (99.05) |
Frequency | Number of Mutual Coupling Elements | S-Parameters dB | Total Antenna Efficiency dB (%) | |
---|---|---|---|---|
1.7 GHz | 1 | −3.9486 | 62.82 − j130.66 | −2.2391 (59.72) |
3 | −3.9204 | 27.76 − j24.12 | −2.2583 (59.45) | |
5 | −8.0147 | 53.00 − j16.81 | −0.7466 (84.20) | |
9 | −30.1146 | 116.16 − j6.29 | −0.0042 (99.90) | |
2.5 GHz | 1 | −8.3272 | 77.3413 − j67.655 | −0.6904 (85.30) |
3 | −7.8620 | 76.310 + j72.498 | −0.7759 (83.64) | |
5 | −17.0512 | 140.95 + j30.367 | −0.0865 (98.03) | |
9 | −17.0527 | 139.46 − j31.102 | −0.0865 (98.03) | |
4 GHz | 1 | −14.5749 | 95.351 − j32.346 | −0.1542 (96.51) |
3 | −5.8523 | 362.52 − j47.795 | −1.3070 (74.01) | |
5 | −11.7313 | 194.92 − j33.444 | −0.3018 (93.29) | |
9 | −14.1703 | 161.27 − j37.123 | −0.1695 (96.17) | |
5.9 GHz | 1 | −12.4752 | 81.31 + j29.03 | −0.2528 (94.34) |
3 | −13.8363 | 91.36 − j32.73 | −0.1834 (95.87) | |
5 | −16.3371 | 99.60 − j26.86 | −0.1021 (97.68) | |
9 | −16.9269 | 91.5265 + j9.96 | −0.0890 (97.97) |
Subarray Size | XOY-Plane Beamwidth | YOZ-Plane Beamwidth | Gain |
---|---|---|---|
(Number of Elements) | (Degree) | (Degree) | (dBi) |
1 | 51.6 | 81.1 | 7.81 |
3 | 48.6 | 37.8 | 7.16 |
5 | 68.3 | 61.5 | 8.80 |
9 | 33.6 | 41.9 | 10.54 |
Finite Array | Configuration | Frequency Bandwidth | Maximum Coupling | Efficiency | Subarray Size |
---|---|---|---|---|---|
(dB) | (%) | (mm) | |||
[44] | Spherical | 8.7–11.2 GHz (25%) | −30 | NA | 300 (diameter) |
[45] | Hemispherical | 2.47 GHz | −35 | NA | |
[46] | Soccer-like spherical | 1–2 GHz (67%) | −15 | NA | |
[47] | Cylindrical | 1.75–2.18 GHz (22%) | −11 | NA | |
This work | Cylindrical | 1.7–5.9 GHz (110%) | −9 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Zhang, Y.; Shi, Q.; Fu, Y.; Temiz, M.; El-Makadema, A.; Li, H. Multibeam Cylindrical Conformal Array in the Presence of Enhanced Mutual Coupling. Electronics 2024, 13, 373. https://doi.org/10.3390/electronics13020373
Lv X, Zhang Y, Shi Q, Fu Y, Temiz M, El-Makadema A, Li H. Multibeam Cylindrical Conformal Array in the Presence of Enhanced Mutual Coupling. Electronics. 2024; 13(2):373. https://doi.org/10.3390/electronics13020373
Chicago/Turabian StyleLv, Xianyang, Yongwei Zhang, Quan Shi, Yanwei Fu, Murat Temiz, Ahmed El-Makadema, and Hongliang Li. 2024. "Multibeam Cylindrical Conformal Array in the Presence of Enhanced Mutual Coupling" Electronics 13, no. 2: 373. https://doi.org/10.3390/electronics13020373
APA StyleLv, X., Zhang, Y., Shi, Q., Fu, Y., Temiz, M., El-Makadema, A., & Li, H. (2024). Multibeam Cylindrical Conformal Array in the Presence of Enhanced Mutual Coupling. Electronics, 13(2), 373. https://doi.org/10.3390/electronics13020373