Spike Dynamics Analysis in Semiconductor Ring Laser
Abstract
:1. Introduction
2. SRL Triggers Spike
2.1. Theoretical Model
2.2. Results Analysis
3. SRL Simulated Neurons
3.1. Theoretical Model
3.2. Results Analysis
4. Results and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortin, D.; Aubin-lemay, C.; Bore, A.; Girard, G.; Houde, J.-C.; Whittingstall, K.; Descoteaux, M. Tractography in the Study of the Human Brain: A Neurosurgical Perspective. Can. J. Neurol. Sci. 2012, 39, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Pei, J.; Deng, N.; Wang, D.; Ma, C. Development of a neuromorphic computing system. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015. [Google Scholar]
- Poo, M.M.; Du, J.L.; Ip, N.Y.; Xiong, Z.Q.; Xu, B.; Tan, T. China Brain Project: Basic Neuroscience, Brain Diseases, and Brain-Inspired Computing. Neuron 2016, 92, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.L.; Chun, M. The BRAIN Initiative: Building, Strengthening, and Sustaining. Neuron 2016, 92, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Okano, H.; Sasaki, E.; Yamamori, T.; Iriki, A.; Shimogori, T.; Yamaguchi, Y.; Kasai, K.; Miyawaki, A. Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience. Neuron 2016, 92, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Koroshetz, W.; Gordon, J.; Adams, A.; Beckel-Mitchener, A.; Churchill, J.; Farber, G.; Freund, M.; Gnadt, J.; Hsu, N.; Langhals, N.; et al. The state of the NIH brain initiative. J. Neurosci. 2018, 38, 6427–6438. [Google Scholar] [CrossRef] [PubMed]
- Sozos, K.; Bogris, A.; Bienstman, P.; Sarantoglou, G.; Deligiannidis, S.; Mesaritakis, C. High-speed photonic neuromorphic computing using recurrent optical spectrum slicing neural networks. Commun. Eng. 2022, 1, 24. [Google Scholar] [CrossRef]
- Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671. [Google Scholar] [CrossRef]
- Shen, Y.; Harris, N.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep Learning with Coherent Nanophotonic Circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Bangari, V.; Marquez, B.; Miller, H.; Tait, A.N.; Nahmias, M.; Ferreira de Lima, T.; Peng, H.-T.; Prucnal, P.; Shastri, B. Digital Electronics and Analog Photonics for Convolutional Neural Networks (DEAP-CNNs). IEEE J. Sel. Top. Quantum Electron. 2019, 26, 7701213. [Google Scholar] [CrossRef]
- Filipovich, M.; Guo, Z.; Marquez, B.; Morison, H.; Shastri, B. Training Deep Neural Networks in Situ with Neuromorphic Photonics. In Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020; pp. 1–2. [Google Scholar]
- Pei, S.; Tang, S.; Yan, S.; Shijin, J.; Zhang, X.; Zheng, Z. How to enhance the dynamic range of excitatory-inhibitory excitable networks. Phys. Rev. E 2012, 86, 021909. [Google Scholar] [CrossRef]
- Al Naimee, K.; Marino, F.; Ciszak, M.; Abdalah, S.; Arecchi, T. Excitability of periodic and chaotic attractors in semiconductor lasers with optoelectronic feedback. Eur. Phys. J. D 2010, 58, 187–189. [Google Scholar] [CrossRef]
- Rinzel, J.; Casades, G. Nonlinear Dynamics of Neuronal Excitability, Oscillations, and Coincidence Detection. Commun. Pure Appl. Math. 2013, 66, 1464–1494. [Google Scholar] [CrossRef] [PubMed]
- Takougang Kingni, S.; Van der Sande, G.; Gelens, L.; Erneux, T.; Danckaert, J. Direct modulation of semiconductor ring lasers: Numerical and asymptotic analysis. J. Opt. Soc. Am. B 2012, 29, 1983. [Google Scholar] [CrossRef]
- Hurtado, A.; Quirce, A.; Valle, A.; Pesquera, L.; Adams, M.J. Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs). Opt. Express 2010, 18, 9423–9428. [Google Scholar] [CrossRef] [PubMed]
- Nahmias, M.; Shastri, B.; Tait, A.N.; Prucnal, P. A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1800212. [Google Scholar] [CrossRef]
- Nahmias, M.; Tait, A.N.; Shastri, B.; Ferreira de Lima, T.; Prucnal, P. Excitable laser processing network node in hybrid silicon: Analysis and simulation. Opt. Express 2015, 23, 26800. [Google Scholar] [CrossRef]
- Peng, H.-T.; Angelatos, G.; Ferreira de Lima, T.; Nahmias, M.; Tait, A.N.; Abbaslou, S.; Shastri, B.; Prucnal, P. Temporal Information Processing with an Integrated Laser Neuron. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 5100209. [Google Scholar] [CrossRef]
- Hurtado, A.; Henning, I.; Adams, M.J. Optical neuron using polarisation switching in a 1550 nm-VCSEL. Opt. Express 2010, 18, 25170–25176. [Google Scholar] [CrossRef]
- Robertson, J.; Wade, E.; Hurtado, A. Electrically Controlled Neuron-Like Spiking Regimes in Vertical-Cavity Surface-Emitting Lasers at Ultrafast Rates. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 5100307. [Google Scholar] [CrossRef]
- Deng, T.; Robertson, J.; Hurtado, A. Controlled Propagation of Spiking Dynamics in Vertical-Cavity Surface-Emitting Lasers: Towards Neuromorphic Photonic Networks. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1800408. [Google Scholar] [CrossRef]
- Robertson, J.; Deng, T.; Javaloyes, J.; Hurtado, A. Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: Theory and experiments. Opt. Lett. 2017, 42, 1560. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zou, W. Demonstration of a distributed feedback laser diode working as a graded-potential-signaling photonic neuron and its application to neuromorphic information processing. Sci. China Inf. Sci. 2020, 63, 160408. [Google Scholar] [CrossRef]
- Ma, B.; Chen, J.; Zou, W. A DFB-LD-Based Photonic Neuromorphic Network for Spatiotemporal Pattern Recognition. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020; p. M2K.2. [Google Scholar]
- Xiang, S.; Wen, A.; Pan, W. Emulation of Spiking Response and Spiking Frequency Property in VCSEL-Based Photonic Neuron. IEEE Photonics J. 2016, 8, 1504109. [Google Scholar] [CrossRef]
- Xiang, S.; Zhang, Y.; Gong, J.; Guo, X.; Lin, L.; Hao, Y. STDP-based Unsupervised Spike Pattern Learning in a Photonic Spiking Neural Network with VCSELs and VCSOAs. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1700109. [Google Scholar] [CrossRef]
- Mesaritakis, C.; Kapsalis, A. Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers. Sci. Rep. 2016, 6, 39317. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, B.; Bonatto, C.; Huyet, G.; Hegarty, S. Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2011, 83, 026207. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, B.; Goulding, D.; Hegarty, S.; Huyet, G.; Cong, D.-Y.; Martinez, A.; Lemaître, A.; Ramdane, A.; Fischer, M.; Gerschütz, F.; et al. Excitable phase slips in an injection-locked single-mode quantum-dot laser. Opt. Lett. 2009, 34, 440–442. [Google Scholar] [CrossRef]
- Coomans, W.; Gelens, L.; Beri, S.; Danckaert, J.; Van der Sande, G. Solitary and Coupled Semiconductor Ring Lasers as Optical Spiking Neurons. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2011, 84, 036209. [Google Scholar] [CrossRef]
- Alexander, K.; Van Vaerenbergh, T.; Fiers, M.; Mechet, P.; Dambre, J.; Bienstman, P. Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response. Opt. Express 2013, 21, 26182–26191. [Google Scholar] [CrossRef]
- Selmi, F.; Braive, R.; Beaudoin, G.; Sagnes, I.; Kuszelewicz, R.; Erneux, T.; Barbay, S. Spike latency and response properties of an excitable micropillar laser. Phys. Rev. E 2016, 94, 042219. [Google Scholar] [CrossRef]
- Barbay, S.; Kuszelewicz, R.; Yacomotti, A.M. Excitability in a semiconductor laser with saturable absorber. Opt. Lett. 2011, 36, 4476–4478. [Google Scholar] [CrossRef] [PubMed]
- Sorel, M.; Giuliani, G.; Scirè, A.; Miglierina, R.; Donati, S.; Laybourn, P.J.R. Operating regimes of GaAs-AlGaAs semiconductor ring lasers: Experiment and model. IEEE J. Quantum Electron. 2003, 39, 1187–1195. [Google Scholar] [CrossRef]
- Li, N.; Pan, W.; Xiang, S.; Yan, L.; Luo, B.; Zou, X.; Zhang, L. Bandwidth and unpredictability properties of semiconductor ring lasers with chaotic optical injection. Opt. Laser Technol. 2013, 53, 45–50. [Google Scholar] [CrossRef]
- Li, N.; Nguimdo, R.; Locquet, A.; Citrin, D.S. Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection. Nonlinear Dyn. 2018, 92, 315–324. [Google Scholar] [CrossRef]
- Beri, S.; Mashal, L.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G. Excitability in optical systems close to Z2-symmetry. Phys. Lett. A 2011, 374, 739–743. [Google Scholar] [CrossRef]
- Goulding, D.; Hegarty, S.; Rasskazov, O.; Melnik, S.; Hartnett, M.; Greene, G.; McInerney, J.; Rachinskii, D.; Huyet, G. Excitability in a Quantum Dot Semiconductor Laser with Optical Injection. Phys. Rev. Lett. 2007, 98, 153903. [Google Scholar] [CrossRef] [PubMed]
- Beri, S.; Gelens, L.; Mestre, M.; Van der Sande, G.; Verschaffelt, G.; Scirè, A.; Mezosi, G.; Sorel, M.; Danckaert, J. Topological Insight into the Non-Arrhenius Mode Hopping of Semiconductor Ring Lasers. Phys. Rev. Lett. 2008, 101, 093903. [Google Scholar] [CrossRef]
- Gelens, L.; Beri, S.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G. Exploring Multistability in Semiconductor Ring Lasers: Theory and Experiment. Phys. Rev. Lett. 2009, 102, 193904. [Google Scholar] [CrossRef]
- Sorel, M.; Laybourn, P.; Scirè, A.; Balle, S.; Giuliani, G.; Miglierina, R.; Donati, S. Alternate oscillations in semiconductor ring lasers. Opt. Lett. 2002, 27, 1992–1994. [Google Scholar] [CrossRef]
- Hurtado, A.; Schires, K.; Henning, I.; Adams, M.J. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems. Appl. Phys. Lett. 2012, 100, 103703. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, P.; Wang, K.; Liu, G.; Wang, Y.; Liu, X.; Guo, G.; Hu, G. Spike Dynamics Analysis in Semiconductor Ring Laser. Electronics 2024, 13, 260. https://doi.org/10.3390/electronics13020260
Mu P, Wang K, Liu G, Wang Y, Liu X, Guo G, Hu G. Spike Dynamics Analysis in Semiconductor Ring Laser. Electronics. 2024; 13(2):260. https://doi.org/10.3390/electronics13020260
Chicago/Turabian StyleMu, Penghua, Kun Wang, Guopeng Liu, Yiqiao Wang, Xintian Liu, Gang Guo, and Guosi Hu. 2024. "Spike Dynamics Analysis in Semiconductor Ring Laser" Electronics 13, no. 2: 260. https://doi.org/10.3390/electronics13020260
APA StyleMu, P., Wang, K., Liu, G., Wang, Y., Liu, X., Guo, G., & Hu, G. (2024). Spike Dynamics Analysis in Semiconductor Ring Laser. Electronics, 13(2), 260. https://doi.org/10.3390/electronics13020260