Geometric Algebra Framework Applied to Single-Phase Linear Circuits with Nonsinusoidal Voltages and Currents
Abstract
:1. Introduction
2. Complex Numbers and Alternating Currents
3. Geometric Algebra of Fourier Harmonics
4. Geometric Power
5. Geometric Power in Terms of Clifford Admittancies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Geometric Algebra and Its Useful Properties
Clifford Products of Basis Vectors
Clifford Product versus Multiplication of Periodic Functions
Commuting Imaginary Units
References
- Hestenes, D.; Sobczyk, G. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics; D. Reidel Publ. Co.: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Vaz, J.; da Rocha, R. An Introduction to Clifford Algebras and Spinors; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Selig, J.M. Clifford Algebras in Engineering. In Lectures on Clifford (Geometric) Algebras and Applications; Abłamowicz, R., Sobczyk, G., Eds.; Birkhäuser: Boston, MA, USA, 2004; pp. 135–156. [Google Scholar]
- Chapell, J.M.; Drake, S.P.; Seidel, C.L.; Gunn, L.J.; Iqbal, A.; Allison, A.; Abbott, D. Geometric algebra for electrical and electronic engineers. Proc. IEEE 2014, 102, 1340–1363. [Google Scholar] [CrossRef]
- Martinez-Terán, G.; na-Ponce, O.U.; Soria-Garcia, G.; Ortega-Cisneros, S.; Bayro-Corrochano, E. Fast Study Quadric Interpolation in the Conformal Geometric Algebra Framework. Electronics 2022, 11, 1527. [Google Scholar] [CrossRef]
- Menti, A.; Zacharias, T.; Milias-Argitis, J. Geometric algebra: A powerful tool for representing power under nonsinusoidal conditions. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 601–609. [Google Scholar] [CrossRef]
- Castilla, M.; Bravo, J.C.; Ordóñez, M.; Montaño, J.C. Clifford Theory: A Geometrical Interpretation of Multivectorial Apparent Power. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 3358–3367. [Google Scholar] [CrossRef]
- Castro-Núñez, M.; Castro-Puche, R. Advantages of Geometric Algebra Over Complex Numbers in the Analysis of Networks With Nonsinusoidal Sources and Linear Loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2056–2064. [Google Scholar] [CrossRef]
- Montoya, F.G.; Baños, R.; Alcayde, A.; Arrabal-Campos, F.M. A new approach to single-phase systems under sinusoidal and nonsinusoidal supply using geometric algebra. Electr. Power Syst. Res. 2020, 189, 106605. [Google Scholar] [CrossRef]
- Castilla, M.V.; Martin, F. A Powerful Tool for Optimal Control of Energy Systems in Sustainable Buildings: Distortion Power Bivector. Energies 2021, 14, 2177. [Google Scholar] [CrossRef]
- Petroianu, A.I. A geometric algebra reformulation and interpretation of Steinmetz’s symbolic method and his power expression in alternating current electrical circuits. Electr. Eng. 2015, 97, 175–180. [Google Scholar] [CrossRef]
- Czarnecki, L.S.; Almousa, M. What is Wrong with the Paper ”The IEEE Standard 1459, the CPC Power Theory and Geometric Algebra in Circuits with Nonsinusoidal Sources and Linear Loads”? Przegla̧d Elektrotech. 2020, 96, 1–7. [Google Scholar] [CrossRef]
- Montoya, F.G.; Baños, R.; Alcayde, A.; Arrabal-Campos, F.M.; Roldán-Pérez, J. Vector Geometric Algebra in Power Systems: An Updated Formulation of Apparent Power under Non-Sinusoidal Conditions. Mathematics 2021, 9, 1295. [Google Scholar] [CrossRef]
- Czarnecki, L.S. Currents’ physical components (CPC) in circuits with nonsinusoidal voltages and currents. Part 1: Single phase linear circuits. Electr. Power Qual. Util. J. 2005, 11, 3–14. [Google Scholar]
- Czarnecki, L.S. Currents’ Physical Components (CPC)–Based Power Theory. A Review. Part I: Power Properties of Electrical Circuits and Systems. Przeglad Elektrotech. 2019, 95, 1–11. [Google Scholar] [CrossRef]
- Czarnecki, L.S. Budeanu and Fryze: Two frameworks for interpreting power properties of circuits with nonsinusoidal voltages and currents. Electr. Eng. 1997, 80, 359–367. [Google Scholar] [CrossRef]
- Salmerón, P.; Flores-Garrido, J.L.; Gómez-Galán, J.A. Instantaneous Reactive Power Theory in the Geometric Algebra Framework. Appl. Sci. 2023, 13, 1796. [Google Scholar] [CrossRef]
- Steinmetz, C.P. Complex quantities and their use in electrical engineering. In Proceedings of the International Electrical Congress, Chicago, IL, USA, 21–25 August 1893; American Institute of Electrical Engineers: New York, NY, USA, 1894; pp. 33–75. [Google Scholar]
- Araújo, A.E.A.; Tonidandel, D.A.V. Steinmetz and the Concept of Phasor: A Forgotten Story. J. Control Autom. Electr. Syst. 2013, 24, 388–395. [Google Scholar] [CrossRef]
- Kenelly, A.E. Impedance. Trans. Am. Inst. Electr. Eng. 1893, 10, 172–232. [Google Scholar] [CrossRef]
- Thomas, R.E.; Rosa, A.J.; Toussaint, G.J. The Analysis and Design of Linear Circuits, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Petroianu, A.I. Bridging Circuits and Fields: Foundational Questions in Power Theory; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Kobus, A.; Cieśliński, J.L. Geometric and Differential Features of Scators as Induced by Fundamental Embedding. Symmetry 2020, 12, 1880. [Google Scholar] [CrossRef]
- Cieśliński, J.L.; Kobus, A. Group Structure and Geometric Interpretation of the Embedded Scator Space. Symmetry 2021, 13, 1504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieśliński, J.L.; Walczyk, C.J. Geometric Algebra Framework Applied to Single-Phase Linear Circuits with Nonsinusoidal Voltages and Currents. Electronics 2024, 13, 3926. https://doi.org/10.3390/electronics13193926
Cieśliński JL, Walczyk CJ. Geometric Algebra Framework Applied to Single-Phase Linear Circuits with Nonsinusoidal Voltages and Currents. Electronics. 2024; 13(19):3926. https://doi.org/10.3390/electronics13193926
Chicago/Turabian StyleCieśliński, Jan L., and Cezary J. Walczyk. 2024. "Geometric Algebra Framework Applied to Single-Phase Linear Circuits with Nonsinusoidal Voltages and Currents" Electronics 13, no. 19: 3926. https://doi.org/10.3390/electronics13193926
APA StyleCieśliński, J. L., & Walczyk, C. J. (2024). Geometric Algebra Framework Applied to Single-Phase Linear Circuits with Nonsinusoidal Voltages and Currents. Electronics, 13(19), 3926. https://doi.org/10.3390/electronics13193926