DCNFYOLO: Dual-Convolution Network and Feature Fusion for High-Precision Smoke Detection
Abstract
:1. Introduction
2. Related Work
2.1. Vision-Based Smoke Analysis
2.2. Deep Learning-Based Smoke Detection
2.3. Attention-Based Mechanism for Object Detection
2.4. YOLO-Based Object Detection
3. Materials and Methods
3.1. Dataset Acquisition and Preprocessing
Images Preprocessing
3.2. Proposed Method
3.2.1. SAC-Based Backbone Network for DCNFYOLO
3.2.2. ECA Attention Mechanism Module
3.2.3. Distribution Shifts Convolution
3.2.4. WIoU Loss Function
4. Results
4.1. Experimental Environments
4.2. Model Evaluation Indicators
4.3. Analysis of Methodology and Effectiveness
4.3.1. Comparisons of Attention Mechanisms
4.3.2. Comparisons of Loss Functions
4.3.3. P-R Curve
4.3.4. Confusion Matrix for Dataset Construction
4.4. Comparisons among Different Models
4.5. Ablation Experiment
4.6. Analysis of Visualization Results
4.6.1. Smoke Detection Results for Different Category Backgrounds
4.6.2. Comparisons of Detection Results among Different Models
4.6.3. Comparisons of Advanced Model Detection Results on Common Datasets
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
YOLOv5 | You Only Look Once version 5 |
DCNFYOLO | Dual-Convolution Network and Feature Fusion based YOLOv5 |
SAConv | Switchable Atrous Convolution |
DSConv | Distribution Shifts Convolution |
WIoU | Wise-IoU |
ECA | Efficient Channel Attention |
CBS | ConvBNSiLU |
FPN | Feature Pyramid Network |
SPPF | Spatial Pyramid Pooling-Fast |
References
- Huang, J.; Zhou, J.; Yang, H. A Small-Target Forest Fire Smoke Detection Model Based on Deformable Transformer for End-to-End Object Detection. Forests 2023, 14, 162. [Google Scholar] [CrossRef]
- Li, J.; Xu, R.; Liu, Y. An Improved Forest Fire and Smoke Detection Model Based on YOLOv5. Forests 2023, 14, 833. [Google Scholar] [CrossRef]
- Zhao, C.; Shu, X.; Yan, X.; Zuo, X.; Zhu, F. RDD-YOLO: A modified YOLO for detection of steel surface defects. Measurement 2023, 214, 112776. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, p.; Xu, S.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef]
- Wu, X.; Sahoo, D.; Hoi, S.C. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64. [Google Scholar] [CrossRef]
- Tao, H.; Lu, M.; Hu, Z. Attention-Aggregated Attribute-Aware Network With Redundancy Reduction Convolution for Video-Based Industrial Smoke Emission Recognition. IEEE Trans. Ind. Inform. 2022, 7653–7664. [Google Scholar] [CrossRef]
- Cao, Y.; Tang, Q.; Wu, X.; Lu, X. EFFNet: Enhanced Feature Foreground Network for Video Smoke Source Prediction and Detection. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1820–1833. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Xia, X.; Huang, Q.; Li, X. A Gated Recurrent Network With Dual Classification Assistance for Smoke Semantic Segmentation. IEEE Trans. Image Process. 2021, 30, 4409–4422. [Google Scholar] [CrossRef]
- Yin, H.; Chen, M.; Fan, W.; Jin, Y. Efficient Smoke Detection Based on YOLOv5s. Mathematics 2022, 10, 3493. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, Q.; Lin, G. A Deep Separable Convolutional Neural Network for Multiscale Image-Based Smoke Detection. Fire Technol. 2022, 58, 1445–1468. [Google Scholar] [CrossRef]
- Jing, T.; Zeng, M.; Meng, Q. SmokePose: End-to-End Smoke Keypoint Detection. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 5778–5789. [Google Scholar] [CrossRef]
- Yin, Z.; Wan, B.; Yuan, F. A Deep Normalization and Convolutional Neural Network for Image Smoke Detection. IEEE Access 2017, 5, 18429–18438. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Xia, X. Deep smoke segmentation. Neurocomputing 2019, 357, 248–260. [Google Scholar] [CrossRef]
- Saponara, S.; Elhanashi, A.; Gagliardi, A. Real-time video fire/smoke detection based on CNN in antifire surveillance systems. J. Real-Time Image Process. 2021, 18, 889–900. [Google Scholar] [CrossRef]
- Tao, H.; Lu, X. Smoke Vehicle Detection Based on Spatiotemporal Bag-Of-Features and Professional Convolutional Neural Network. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3301–3316. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Wu, Q.J.; Liu, C. 3D Parallel Fully Convolutional Networks for Real-Time Video Wildfire Smoke Detection. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 89–103. [Google Scholar] [CrossRef]
- Verma, S.; Kaur, S.; Rawat, D.B. Intelligent Framework Using IoT-Based WSNs for Wildfire Detection. IEEE Access 2021, 9, 48185–48196. [Google Scholar] [CrossRef]
- Kaur, K.; Garg, S.; Kaddoum, G.; Ahmed, S.H. KEIDS: Kubernetes-Based Energy and Interference Driven Scheduler for Industrial IoT in Edge-Cloud Ecosystem. IEEE Internet Things J. 2020, 7, 4228–4237. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, C.; Gao, Z. Industrial Pervasive Edge Computing-Based Intelligence IoT for Surveillance Saliency Detection. IEEE Trans. Ind. Inform. 2021, 17, 5012–5020. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, C.; Zhang, H. Trustful Internet of Surveillance Things Based on Deeply Represented Visual Co-Saliency Detection. IEEE Internet Things J. 2020, 7, 4092–4100. [Google Scholar] [CrossRef]
- Połap, D.; Woźniak, M. Meta-heuristic as manager in federated learning approaches for image processing purposes. Appl. Soft Comput. 2021, 113, 107872. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, H.; Dong, S. Salient Object Detection in the Distributed Cloud-Edge Intelligent Network. IEEE Netw. 2020, 34, 216–224. [Google Scholar] [CrossRef]
- Pawar, A. A multi-disciplinary vision-based fire and smoke detection system. In Proceedings of the IEEE 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7 November 2020; pp. 900–904. [Google Scholar] [CrossRef]
- Khan, S.; Muhammad, K.; Hussain, T.; Ser, J.D. DeepSmoke: Deep learning model for smoke detection and segmentation in outdoor environments. Expert Syst. Appl. 2021, 182, 115125. [Google Scholar] [CrossRef]
- Khan, M.; Khan, S.; Palade, V. Edge Intelligence-Assisted Smoke Detection in Foggy Surveillance Environments. IEEE Trans. Ind. Inform. 2020, 16, 1067–1075. [Google Scholar] [CrossRef]
- Almeida, J.S.; Huang, C.; Nogueira, F.G. EdgeFireSmoke: A Novel Lightweight CNN Model for Real-Time Video Fire–Smoke Detection. IEEE Trans. Ind. Inform. 2022, 18, 7889–7898. [Google Scholar] [CrossRef]
- Khan, S.; Khan, M.; Mumtaz, S. Energy-Efficient Deep CNN for Smoke Detection in Foggy IoT Environment. IEEE Internet Things J. 2019, 6, 9237–9245. [Google Scholar] [CrossRef]
- Feng, X.; Cheng, P.; Chen, F.; Huang, Y. Full-Scale Fire Smoke Root Detection Based on Connected Particles. Sensors 2022, 22, 6748. [Google Scholar] [CrossRef]
- Mozaffari, M.; Li, Y.; Ko, Y. Real-time detection and forecast of flashovers by the visual room fire features using deep convolutional neural networks. J. Build. Eng. 2023, 64, 105674. [Google Scholar] [CrossRef]
- Li, X.; Zhang, G.; Sanqing Tanand Yang, Z. Forest Fire Smoke Detection Research Based on the Random Forest Algorithm and Sub-Pixel Mapping Method. Forests 2023, 14, 485. [Google Scholar] [CrossRef]
- Polap, D.; Jaszcz, A. Sonar Digital Twin Layer via Multiattention Networks With Feature Transfer. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–10. [Google Scholar] [CrossRef]
- Du, X.; Cheng, H.; Ma, H.; Lu, W. DSW-YOLO: A detection method for ground-planted strawberry fruits under different occlusion levels. Comput. Electron. Agric. 2023, 214, 108304. [Google Scholar] [CrossRef]
- Wu, C.; Lei, J.; Liu, W.; Ren, M. Unmanned Ship Identification Based on Improved YOLOv8s Algorithm. Comput. Mater. Contin. 2024, 78, 3071–3088. [Google Scholar] [CrossRef]
- Hu, Y.; Zhan, J.; Zhou, G.; Chen, A. Fast forest fire smoke detection using MVMNet. Knowl.-Based Syst. 2022, 241, 108219. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; He, Y. YOLOv5-Fog: A Multiobjective Visual Detection Algorithm for Fog Driving Scenes Based on Improved YOLOv5. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Tu, X.; Yuan, Z.; Liu, B.; Liu, J. An improved YOLOv5 for object detection in visible and thermal infrared images based on contrastive learning. Front. Phys. 2023, 11, 1193245. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, W.; Sun, T.; Ren, X. Lightweight forest smoke and fire detection algorithm based on improved YOLOv5. PLoS ONE 2023, 18, e0291359. [Google Scholar] [CrossRef]
- Al-Smadi, Y.; Alauthman, M.; Al-Qerem, A. Early Wildfire Smoke Detection Using Different YOLO Models. Machines 2023, 11, 246. [Google Scholar] [CrossRef]
- Li, C.; Zhao, G.; Gu, D.; Wang, Z. Improved Lightweight YOLOv5 Using Attention Mechanism for Satellite Components Recognition. IEEE Sens. J. 2023, 23, 514–526. [Google Scholar] [CrossRef]
- Song, Y.; Xie, Z.; Wang, X.; Zou, Y. MS-YOLO: Object Detection Based on YOLOv5 Optimized Fusion Millimeter-Wave Radar and Machine Vision. IEEE Sens. J. 2022, 22, 15435–15447. [Google Scholar] [CrossRef]
Types | Dataset | Smoke Image | Non-Smoke Images | Total |
---|---|---|---|---|
Self-built datasets | Training set | 4200 | 1050 | 5250 |
Test set_1 | 1250 | 684 | 1934 | |
Validation set | 1413 | 684 | 2097 | |
Total | 6863 | 2418 | 9281 | |
Public datasets | Test set_2 | 1300 | 400 | 1700 |
Test set_3 | 1300 | 400 | 1700 | |
Total | 2600 | 800 | 3400 | |
All | Total | 9463 | 3218 | 12,681 |
Attention | P | R | FPS |
---|---|---|---|
Backbone | 0.889 | 0.896 | 73.4 |
YOLOv5+SA | 0.878 | 0.835 | 72.6 |
YOLOv5+SE | 0.896 | 0.943 | 69.2 |
YOLOv5+CBAM | 0.907 | 0.957 | 72.5 |
YOLOv5+ECA (Ours) | 0.956 | 0.986 | 73.9 |
Loss Function | Box_Loss | Loss | AP |
---|---|---|---|
YOLOv5+CIoU | 0.02975 | 0.02071 | 0.911 |
YOLOv5+SIoU | 0.02974 | 0.02023 | 0.920 |
YOLOv5+DIoU | 0.03167 | 0.01965 | 0.922 |
YOLOv5+WIoU (Ours) | 0.02474 | 0.01839 | 0.931 |
Model | P | R | AP | Model Size/MB |
---|---|---|---|---|
SSD | 0.836 | 0.832 | 0.841 | 142 |
Faster R-CNN | 0.854 | 0.841 | 0.862 | - |
DeepSmoke | 0.902 | 0.863 | 0.896 | - |
YOLOv4 | 0.905 | 0.901 | 0.931 | 244 |
YOLOv4-tiny | 0.899 | 0.879 | 0.892 | 22.6 |
YOLOv5 | 0.889 | 0.896 | 0.912 | 14.1 |
DCNFYOLO | 0.966 | 0.97 | 0.989 | 18.6 |
Number | SAConv | DSConv | ECA | WIoU | Precision | Recall | AP | AP0.5:0.95 | GFLOPs |
---|---|---|---|---|---|---|---|---|---|
YOLOv5 | 0.889 | 0.896 | 0.912 | 0.50 | 15.9 | ||||
YOLOv5+SAConv | ✓ | 0.915 | 0.913 | 0.925 | 0.53 | 19.5 | |||
YOLOv5+DSConv | ✓ | 0.896 | 0.884 | 0.900 | 0.48 | 13.2 | |||
YOLOv5+ECA | ✓ | 0.918 | 0.915 | 0.940 | 0.55 | 16.6 | |||
YOLOv5+WIoU | ✓ | 0.923 | 0.927 | 0.960 | 0.62 | 15.9 | |||
YOLOv5+SAConv+WIoU | ✓ | ✓ | 0.943 | 0.932 | 0.944 | 0.57 | 19.6 | ||
YOLOv5+DSConv+WIoU | ✓ | ✓ | 0.924 | 0.917 | 0.940 | 0.59 | 13.4 | ||
YOLOv5+ECA+WIoU | ✓ | ✓ | 0.947 | 0.943 | 0.964 | 0.70 | 17.3 | ||
DCNFYOLO | ✓ | ✓ | ✓ | ✓ | 0.966 | 0.970 | 0.989 | 0.75 | 16.0 |
Method | Detection Result | ||
---|---|---|---|
SSD | |||
Faster R-CNN | |||
YOLOv5 | |||
Ours | |||
(a) | (b) | (c) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Liu, X.; Liu, B.; Zhu, Y. DCNFYOLO: Dual-Convolution Network and Feature Fusion for High-Precision Smoke Detection. Electronics 2024, 13, 3864. https://doi.org/10.3390/electronics13193864
Chen X, Liu X, Liu B, Zhu Y. DCNFYOLO: Dual-Convolution Network and Feature Fusion for High-Precision Smoke Detection. Electronics. 2024; 13(19):3864. https://doi.org/10.3390/electronics13193864
Chicago/Turabian StyleChen, Xin, Xuzhao Liu, Bing Liu, and Yaolin Zhu. 2024. "DCNFYOLO: Dual-Convolution Network and Feature Fusion for High-Precision Smoke Detection" Electronics 13, no. 19: 3864. https://doi.org/10.3390/electronics13193864
APA StyleChen, X., Liu, X., Liu, B., & Zhu, Y. (2024). DCNFYOLO: Dual-Convolution Network and Feature Fusion for High-Precision Smoke Detection. Electronics, 13(19), 3864. https://doi.org/10.3390/electronics13193864