Research Trends and Usability Challenges in Behavioral Data-Based Cognitive Function Assessment
Abstract
:1. Introduction
2. Findings
3. Analysis on Behavioral Data Assessment Experimental Settings
3.1. Method for the Selection of Articles for Review
3.1.1. Eligibility Criteria
3.1.2. Search Strategy
3.1.3. Selection Process
3.1.4. Data Collection Process and Data Items
3.2. Variables for Diagnosing Cognitive Functions
3.2.1. Variables Used in Gait Analysis
3.2.2. Variables Used in Hand Movement Analysis
3.3. Technology for Measuring Behavioral Data
3.3.1. Gait Assessment Technology
3.3.2. Hand Movement Assessment Technology
3.4. Research Trends in Behavioral Data Analysis for Cognitive Function Assessment
3.4.1. Research Trends in Gait Analysis
3.4.2. Research Trends in Hand Movement Analysis
3.5. Limitations of Behavioral Data Analysis Technology and UX
3.5.1. Technical Limitations in Behavioral Data-Based Cognitive Assessment Research
3.5.2. Limitations of Behavioral Data-Based Cognitive Assessment Research Considering UX
4. Discussion
5. Conclusions and Directions of Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, K.; Xiong, X.; Li, M.; Yuan, J.; Luo, Y.; Friedman, D.B. Trends in prevalence, health disparities, and early detection of dementia: A 10-year nationally representative serial cross-sectional and cohort study. Front. Public Health 2023, 10, 1021010. [Google Scholar] [CrossRef] [PubMed]
- Halonen, P.; Enroth, L.; Jämsen, E.; Vargese, S.; Jylhä, M. Dementia and related comorbidities in the population aged 90 and over in the vitality 90+ study, Finland: Patterns and trends from 2001 to 2018. J. Aging Health 2023, 35, 370–382. [Google Scholar] [CrossRef] [PubMed]
- OECD. Korean Relative Old-Age Poverty Rates Are the Highest in the OECD; OCED: Paris, France, 2022; Available online: https://www.oecd-ilibrary.org/content/component/2fa7c484-en (accessed on 1 June 2024). [CrossRef]
- Dementia, N.I. Dementia Today. Available online: https://www.nid.or.kr/info/today_list.aspx (accessed on 28 May 2024).
- Dementia, N.I. Dementia Status, 2023. Available online: https://www.nid.or.kr/info/ub_2021.aspx?no=153197 (accessed on 11 June 2024).
- Yoon, H.; Lee, O.; Lee, J.; Choi, M.; Kang, M.; Lee, J.; Seo, J.; Go, I. Global Trends of Dementia Policy 2022; Technical Report, Report No. NMC-2022-0073-10; National Institute of Dementia: Seoul, Republic of Korea, 2022.
- Asan Medical Center. Available online: https://www.amc.seoul.kr/asan/healthinfo/disease/diseaseDetail.do?contentId=32003 (accessed on 13 May 2024).
- Asan Medical Center. Available online: https://www.amc.seoul.kr/asan/healthinfo/disease/diseaseDetail.do?contentId=31575 (accessed on 15 June 2024).
- Oh, E.; Lee, A.Y. Mild cognitive impairment. J. Korean Neurol. Assoc. 2016, 34, 167–175. [Google Scholar] [CrossRef]
- Seoul Metropolitan Center for Dementia 2021. Available online: https://www.youtube.com/watch?v=5-aDV8JM_w8 (accessed on 30 April 2024).
- Nelson, P.T.; Alafuzoff, I.; Bigio, E.H.; Bouras, C.; Braak, H.; Cairns, N.J.; Castellani, R.J.; Crain, B.J.; Davies, P.; Tredici, K.D.; et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J. Neuropathol. Exp. Neurol. 2012, 71, 362–381. [Google Scholar] [CrossRef]
- Grande, G.; Triolo, F.; Nuara, A.; Welmer, A.K.; Fratiglioni, L.; Vetrano, D.L. Measuring gait speed to better identify prodromal dementia. Exp. Gerontol. 2019, 124, 110625. [Google Scholar] [CrossRef]
- Verghese, J.; Lipton, R.B.; Hall, C.B.; Kuslansky, G.; Katz, M.J.; Buschke, H. Abnormality of gait as a predictor of non-Alzheimer’s dementia. N. Engl. J. Med. 2002, 347, 1761–1768. [Google Scholar] [CrossRef]
- Negin, F.; Rodriguez, P.; Koperski, M.; Kerboua, A.; Gonzàlez, J.; Bourgeois, J.; Chapoulie, E.; Robert, P.; Bremond, F. PRAXIS: Towards automatic cognitive assessment using gesture recognition. Expert Syst. Appl. 2018, 106, 21–35. [Google Scholar] [CrossRef]
- Boyd, J.E.; Little, J.J. Biometric gait recognition. In Advanced Studies in Biometrics: Summer School on Biometrics, Alghero, Italy, 2–6 June 2003; Revised Selected Lectures and Papers; Springer: Berlin/Heidelberg, Germany, 2005; pp. 19–42. [Google Scholar]
- Hesseberg, K.; Tangen, G.G.; Pripp, A.H.; Bergland, A. Associations between cognition and hand function in older people diagnosed with mild cognitive impairment or dementia. Dement. Geriatr. Cogn. Disord. Extra 2021, 10, 195–204. [Google Scholar] [CrossRef]
- Lowe, D.A.; MacAulay, R.K.; Szeles, D.M.; Milano, N.J.; Wagner, M.T. Dual-task gait assessment in a clinical sample: Implications for improved detection of mild cognitive impairment. J. Gerontol. Ser. B 2020, 75, 1372–1381. [Google Scholar] [CrossRef]
- Zhong, Q.; Ali, N.; Gao, Y.; Wu, H.; Wu, X.; Sun, C.; Ma, J.; Thabane, L.; Xiao, M.; Zhou, Q.; et al. Gait kinematic and kinetic characteristics of older adults with mild cognitive impairment and subjective cognitive decline: A cross-sectional study. Front. Aging Neurosci. 2021, 13, 664558. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, Y.; Cao, X.; Yang, X.; Zhu, C.; Li, Y.; Liu, Y. Deep learning based gait analysis for contactless dementia detection system from video camera. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Virtual, 22–28 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Lindh-Rengifo, M.; Jonasson, S.B.; Ullen, S.; Stomrud, E.; Palmqvist, S.; Mattsson-Carlgren, N.; Hansson, O.; Nilsson, M.H. Components of gait in people with and without mild cognitive impairment. Gait Posture 2022, 93, 83–89. [Google Scholar] [CrossRef]
- Borda, M.G.; Ferreira, D.; Selnes, P.; Tovar-Rios, D.A.; Jaramillo-Jiménez, A.; Kirsebom, B.E.; Garcia-Cifuentes, E.; Dalaker, T.O.; Oppedal, K.; Sønnesyn, H.; et al. Timed up and go in people with subjective cognitive decline is associated with faster cognitive deterioration and cortical thickness. Dement. Geriatr. Cogn. Disord. 2022, 51, 63–72. [Google Scholar] [CrossRef]
- Skillbäck, T.; Blennow, K.; Zetterberg, H.; Skoog, J.; Rydén, L.; Wetterberg, H.; Guo, X.; Sacuiu, S.; Mielke, M.M.; Zettergren, A.; et al. Slowing gait speed precedes cognitive decline by several years. Alzheimer Dement. 2022, 18, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, V.; Sousa, I.; de Bruin, E.D.; Pais, J.; Correia, M.V. Minding your steps: A cross-sectional pilot study using foot-worn inertial sensors and dual-task gait analysis to assess the cognitive status of older adults with mobility limitations. BMC Geriatr. 2023, 23, 329. [Google Scholar] [CrossRef] [PubMed]
- Baumard, J.; Lesourd, M.; Remigereau, C.; Lucas, C.; Jarry, C.; Osiurak, F.; Le Gall, D. Imitation of meaningless gestures in normal aging. Aging, Neuropsychol. Cogn. 2020, 27, 729–747. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, M.; Han, Z.; Jiao, J.; Tong, X. The gesture imitation test in dementia with Lewy bodies and Alzheimer’s disease dementia. Front. Neurol. 2022, 13, 950730. [Google Scholar] [CrossRef]
- Curreri, C.; Trevisan, C.; Carrer, P.; Facchini, S.; Giantin, V.; Maggi, S.; Noale, M.; De Rui, M.; Perissinotto, E.; Zambon, S.; et al. Difficulties with fine motor skills and cognitive impairment in an elderly population: The progetto veneto anziani. J. Am. Geriatr. Soc. 2018, 66, 350–356. [Google Scholar] [CrossRef]
- Chua, S.I.L.; Tan, N.C.; Wong, W.T.; Allen, J.C., Jr.; Quah, J.H.M.; Malhotra, R.; Østbye, T. Virtual reality for screening of cognitive function in older persons: Comparative study. J. Med. Internet Res. 2019, 21, e14821. [Google Scholar] [CrossRef]
- Liang, X.; Kapetanios, E.; Woll, B.; Angelopoulou, A. Real time hand movement trajectory tracking for enhancing dementia screening in ageing deaf signers of British sign language. In Machine Learning and Knowledge Extraction: Third IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2019, Canterbury, UK, 26–29 August 2019; Proceedings 3; Springer: Cham, Switzerland, 2019; pp. 377–394. [Google Scholar]
- Umemura, K.; Kawanaka, H.; Hicks, Y.; Secthi, R. Significant Features of Hand Motion for Dementia Evaluation in the Simple Recreation Game. Procedia Comput. Sci. 2020, 176, 3173–3181. [Google Scholar] [CrossRef]
- Park, J.; Seo, K.; Kim, S.E.; Ryu, H.; Choi, H. Early Screening of Mild Cognitive Impairment Through Hand Movement Analysis in Virtual Reality Based on Machine Learning: Screening of MCI Through Hand Movement in VR. J. Cogn. Interv. Digit. Health 2022, 1, 1–7. [Google Scholar] [CrossRef]
- Callisaya, M.L.; Launay, C.P.; Srikanth, V.K.; Verghese, J.; Allali, G.; Beauchet, O. Cognitive status, fast walking speed and walking speed reserve—the Gait and Alzheimer Interactions Tracking (GAIT) study. Geroscience 2017, 39, 231–239. [Google Scholar] [CrossRef]
- Beauchet, O.; Allali, G.; Thiery, S.; Gautier, J.; Fantino, B.; Annweiler, C. Association Between High Variability of Gait Speed and Mild Cognitive Impairment: A Cross-Sectional Pilot Study. J. Am. Geriatr. Soc. 2011, 59, 1973–1974. [Google Scholar] [CrossRef] [PubMed]
- Kharb, A.; Saini, V.; Jain, Y.; Dhiman, S. A review of gait cycle and its parameters. IJCEM Int. J. Comput. Eng. Manag. 2011, 13, 78–83. [Google Scholar]
- Jacquelin Perry, M. Gait Analysis: Normal and Pathological Function; SLACK: West Deptford, NJ, USA, 2010. [Google Scholar]
- Yamaguchi, H.; Maki, Y.; Yamagami, T. Yamaguchi fox-pigeon imitation test: A rapid test for dementia. Dement. Geriatr. Cogn. Disord. 2010, 29, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, Y.; Okina, T.; Suzuki, N. Impaired imitation of gestures in mild dementia: Comparison of dementia with Lewy bodies, Alzheimer’s disease and vascular dementia. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1248–1252. [Google Scholar] [CrossRef]
- Hwang-Bo, G.; Jeong, H.Y.; Bae, S.S. Comparison of Gait Characteristics in Young and Old Persons with GAITRite System Analysis. PNF Mov. 2003, 1, 33–41. [Google Scholar]
- Egerton, T.; Thingstad, P.H.J. GAITRite - Truly Portable GAIT Analysis. 2015. Available online: https://www.youtube.com/watch?v=uOKTkjj67nA&list=TLGGVVfIayRe0D4wNzAyMjAyMw&t=50s (accessed on 1 July 2024).
- Lee, B.K.; Han, D.W.; Kim, C.Y.; Kim, G.Y.; Park, D.S. The Reliability and Validity of Smart Insole for Balance and Gait Analysis. J. Korean Soc. Integr. Med. 2021, 9, 291–298. [Google Scholar]
- Kanko, R.M.; Laende, E.; Selbie, W.S.; Deluzio, K.J. Inter-session repeatability of markerless motion capture gait kinematics. J. Biomech. 2021, 121, 110422. [Google Scholar] [CrossRef] [PubMed]
- Gwan-ju, L. 2023. Available online: https://cm.asiae.co.kr/article/2023022215141331613 (accessed on 15 June 2024).
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Kim, J.H. Reliability and validity of gait assessment tools for elderly person. J. Korean Phys. Ther. 2009, 21, 41–48. [Google Scholar]
- An, S.H.; Park, C.S.; Lee, H.J. Correlation between balance, walking test and functional performance in stroke patients: BBS, TUG, Fugl-Meyer, MAS-G, C· MGS, and MBI. Phys. Ther. Korea 2007, 14, 64–71. [Google Scholar]
- Jessen, F.; Amariglio, R.E.; Buckley, R.F.; van der Flier, W.M.; Han, Y.; Molinuevo, J.L.; Rabin, L.; Rentz, D.M.; Rodriguez-Gomez, O.; Saykin, A.J.; et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020, 19, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Jessen, F.; Amariglio, R.E.; Van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chételat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; Van Der Flier, W.M.; et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer Dement. 2014, 10, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Barberger-Gateau, P.; Fabrigoule, C.; Helmer, C.; Rouch, I.; Dartigues, J.F. Functional impairment in instrumental activities of daily living: An early clinical sign of dementia? J. Am. Geriatr. Soc. 1999, 47, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.; Bae, S.; Park, H. Gait speed and sleep duration is associated with increased risk of MCI in older community-dwelling adults. Int. J. Environ. Res. Public Health 2022, 19, 7625. [Google Scholar] [CrossRef]
- Seo, K.; Kim, J.k.; Oh, D.H.; Ryu, H.; Choi, H. Virtual daily living test to screen for mild cognitive impairment using kinematic movement analysis. PLoS ONE 2017, 12, e0181883. [Google Scholar] [CrossRef]
- Rawtaer, I.; Mahendran, R.; Kua, E.H.; Tan, H.P.; Tan, H.X.; Lee, T.S.; Ng, T.P. Early detection of mild cognitive impairment with in-home sensors to monitor behavior patterns in community-dwelling senior citizens in Singapore: Cross-sectional feasibility study. J. Med. Internet Res. 2020, 22, e16854. [Google Scholar] [CrossRef]
Assessed Category | First Author (Year) | Diagnostic Targets | Behavioral Data Assessment Items | Variables (1) | Assessment Devices | Remark |
---|---|---|---|---|---|---|
Gait | Lowe (2020) [17] | MCI |
| Gait speed | Stopwatch | N/A |
Zhong (2021) [18] | SCD, MCI |
| Gait speed, knee peak extension angle, knee angle at heel strike on right side | Force plate (AMTI BP400600, DC, USA, sampled at 1000 Hz), 3D Motion capture system (Vicon Nexus 2.8, Oxford Metrics, Oxford, United Kingdom) | N/A | |
Zhang (2021) [19] | Dementia |
|
| Kinect 2.0 | N/A | |
Lindh-Rengifo (2022) [20] | MCI |
| Step velocity variability, mean step length, mean step time, swing and stance time asymmetry | GAITRITE (Platinum, CIR Systems Inc., NJ, USA) | N/A | |
Borda (2022) [21] | SCD |
| Gait speed | Stopwatch | TUG test | |
Skillbäck (2022) [22] | SCD, AD |
| Gait speed | N/A | Longitudinal study | |
Guimarães (2023) [23] | MCI |
| Stride time, gait speed, Foot fat ratio, Pushing ratio, Liftoff angle, Minimum toe clearance, Heel 3D path length, Heel 3D path length variability, Toe 3D path length variability, Loading ratio asymmetry | Foot-worn inertial sensor-based gait analysis solution (Equipped with 3-axis gyroscope and 3-axis accelerometer (Bosch BMI160)) | N/A | |
Hand movements (gesture) | Negina (2018) [14] | AD |
| Accuracy | Kinect v2 | N/A |
Baumard (2020) [24] | Normal aging |
| Scoring System (+ Completion Time for Imitation; 0–2 additional points awarded for faster completion times in case of 2 points):
| N/A | Evaluated by an examiner | |
Li (2022) [25] | Lewy body dementia, AD |
| Scoring System
| N/A | Evaluated by an examiner | |
Hand movements (for performing daily activities or specific tasks) | Curreri (2018) [26] | Dementia, MCI |
| Completion time | N/A | Evaluated by an examiner |
Chua (2019) [27] | MCI |
| Scoring system | N/A | Application of VR:
| |
Liang (2019) [28] | Dementia, MCI |
| Hand movement trajectories and speed | Real-time web camera | Collected clinically meaningful facial expression data with hand movement data | |
Umemura (2020) [29] | Dementia |
| Movement ratios of both hands, dominant hand, and non-dominant hand | Leap motion (3D hand recognition device) | Tangram: A shape
| |
Park (2022) [30] | MCI |
| Hand movement speed | Hand controller for VR (virtual reality) | Application of VR |
Assessment Devices | Stopwatch | Wearable Inertial Sensor (3-Axis Digital Gyroscope + 3-Axis Accelerometer (Bosch BMI160)) | Optical Motion Capture (Kinect v2) | Instrumented Walkways (GAITRite System) | 3D Motion Capture System (Vicon) |
---|---|---|---|---|---|
Feature |
|
|
|
|
|
Assessment Data | Temporal data related to gait | Acceleration and angular velocity data of gait motion | Relatively simple full-body gait data | Detailed gait specific data | Precise and comprehensive full-body gait data |
Cost | Very affordable <——————————————————————————————————> Very expensive |
The Environment of Hand Movement Data | ||
---|---|---|
Reality | Virtual Reality | |
Data measurement Device | Kinect v2 Leap motion, Real-time web camera | Hand controller |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.; Kim, H.-J.; Kim, S.-H. Research Trends and Usability Challenges in Behavioral Data-Based Cognitive Function Assessment. Electronics 2024, 13, 3830. https://doi.org/10.3390/electronics13193830
Jang Y, Kim H-J, Kim S-H. Research Trends and Usability Challenges in Behavioral Data-Based Cognitive Function Assessment. Electronics. 2024; 13(19):3830. https://doi.org/10.3390/electronics13193830
Chicago/Turabian StyleJang, Yoon, Hui-Jun Kim, and Sung-Hee Kim. 2024. "Research Trends and Usability Challenges in Behavioral Data-Based Cognitive Function Assessment" Electronics 13, no. 19: 3830. https://doi.org/10.3390/electronics13193830
APA StyleJang, Y., Kim, H.-J., & Kim, S.-H. (2024). Research Trends and Usability Challenges in Behavioral Data-Based Cognitive Function Assessment. Electronics, 13(19), 3830. https://doi.org/10.3390/electronics13193830