Object Detection, Segmentation and Categorization in Artificial Intelligence
Funding
Data Availability Statement
Conflicts of Interest
List of Contributions
- Yin, C.; Ye, Q.; Zhang, S.; Yang, Z. Detecting Logos for Indoor Environmental Perception Using Unsupervised and Few-Shot Learning. Electronics 2024, 13, 2246.
- Wang, Y.; Dang, K.; Yang, R.; Li, L.; Li, H.; Gong, M. Multi-Objective Automatic Clustering Algorithm Based on Evolutionary Multi-Tasking Optimization. Electronics 2024, 13, 1987.
- Shao, Y.; Wang, S.; Zhao, W. A Causality-Aware Perspective on Domain Generalization via Domain Intervention. Electronics 2024, 13, 1891.
- Shang, Y.; Wang, Q.; Zhu, W.; Xie, F.; Wang, H.; Li, L. Evolutionary Competition Multitasking Optimization with Online Resource Allocation for Endmemeber Extraction of Hyperspectral Images. Electronics 2024, 13, 1424.
- Li, L.; Liu, L.; He, Y.; Zhong, Z. USES-Net: An Infrared Dim and Small Target Detection Network with Embedded Knowledge Priors. Electronics 2024, 13, 1400.
- Xu, H.; Liu, X.; Ma, Y.; Zhu, Z.; Wang, S.; Yan, C.; Dai, F. Rotated Object Detection with Circular Gaussian Distribution. Electronics 2023, 12, 3265.
- Wang, J.; Li, Y.; Wang, J.; Li, Y. An Underwater Dense Small Object Detection Model Based on YOLOv5-CFDSDSE. Electronics 2023, 12, 3231.
- Ortega-Gomez, J.I.; Morales-Hernandez, L.A.; Cruz-Albarran, I.A. A Specialized Database for Autonomous Vehicles Based on the KITTI Vision Benchmark. Electronics 2023, 12, 3165.
- Guan, Q.; Liu, Y.; Chen, L.; Zhao, S.; Li, G. Aircraft Detection and Fine-Grained Recognition Based on High-Resolution Remote Sensing Images. Electronics 2023, 12, 3146.
- Al-Razgan, M.S.; Alruwaly, I.; Ali, Y.A. Eye-Blink Event Detection Using a Neural-Network-Trained Frame Segment for Woman Drivers in Saudi Arabia. Electronics 2023, 12, 2699.
- Song, G.; Guo, X.; Zhang, Q.; Li, J.; Ma, L. Underwater Noise Modeling and Its Application in Noise Classification with Small-Sized Samples. Electronics 2023, 12, 2669.
- Wang, J.; Li, H.; Huo, G.; Li, C.; Wei, Y. Multi-Mode Channel Position Attention Fusion Side-Scan Sonar Transfer Recognition. Electronics 2023, 12, 791.
References
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection. Prog. Artif. Intell. 2020, 9, 85–112. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1, pp. 511–518. [Google Scholar]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, G.; Wang, J.; Yao, X.; Han, J. Oriented R-CNN for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3520–3529. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Joseph, K.; Khan, S.; Khan, F.S.; Balasubramanian, V.N. Towards open world object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 5830–5840. [Google Scholar]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 4015–4026. [Google Scholar]
- Zou, X.; Yang, J.; Zhang, H.; Li, F.; Li, L.; Wang, J.; Wang, L.; Gao, J.; Lee, Y.J. Segment everything everywhere all at once. In Proceedings of the International Conference on Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; pp. 19769–19782. [Google Scholar]
- Li, Y.; Wu, C.Y.; Fan, H.; Mangalam, K.; Xiong, B.; Malik, J.; Feichtenhofer, C. Mvitv2: Improved multiscale vision transformers for classification and detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4804–4814. [Google Scholar]
- Ibrahim Daradkeh, Y.; Gorokhovatskyi, V.; Tvoroshenko, I.; Al-Dhaifallah, M. Classification of Images Based on a System of Hierarchical Features. Comput. Mater. Contin. 2002, 72, 1785–1797. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024; pp. 16965–16974. [Google Scholar]
- Li, H.; Wan, F.; Gong, M.; Qin, A.; Wu, Y.; Xing, L. Privacy-enhanced multitasking particle swarm optimization based on homomorphic encryption. IEEE Trans. Evol. Comput. 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xie, F.; Zhou, J.; Liu, J. Object Detection, Segmentation and Categorization in Artificial Intelligence. Electronics 2024, 13, 2650. https://doi.org/10.3390/electronics13132650
Li H, Xie F, Zhou J, Liu J. Object Detection, Segmentation and Categorization in Artificial Intelligence. Electronics. 2024; 13(13):2650. https://doi.org/10.3390/electronics13132650
Chicago/Turabian StyleLi, Hao, Fei Xie, Jianbo Zhou, and Jieyi Liu. 2024. "Object Detection, Segmentation and Categorization in Artificial Intelligence" Electronics 13, no. 13: 2650. https://doi.org/10.3390/electronics13132650
APA StyleLi, H., Xie, F., Zhou, J., & Liu, J. (2024). Object Detection, Segmentation and Categorization in Artificial Intelligence. Electronics, 13(13), 2650. https://doi.org/10.3390/electronics13132650