Evaluating Multimodal Techniques for Predicting Visibility in the Atmosphere Using Satellite Images and Environmental Data
Abstract
:1. Introduction
- To combine satellite remote sensing images and environmental data to form a multimodal dataset, effectively improving the classification performance of visibility;
- To compare two different multimodal data processing techniques to establish the optimal visibility classification model;
- To investigate the impact of various environmental data features on multiclass visibility classification performance.
2. Materials and Methods
2.1. Materials
2.2. Proposed Framework
2.3. Approach 1: Multimodal Data Fusion Using Deep Learning
2.4. Approach 2: Multimodal Data Fusion Using Transfer Learning and Machine Learning
3. Experimental Results
3.1. Environmental Data Correlation Analysis
3.2. Visibility Classification Using Deep Learning and Satellite Images
3.3. Visibility Classification Using Deep Learning and Multimodal Data
3.4. Visibility Classification Using Transfer Learning, Machine Learning, and Multimodal Data
4. Discussion
4.1. Performance Comparison after Adding Environmental Data Features
4.2. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hyslop, N.P. Impaired visibility: The air pollution people see. Atmos. Environ. 2009, 43, 182–195. [Google Scholar] [CrossRef]
- Tsai, Y.I. Atmospheric visibility trends in an urban area in Taiwan 1961–2003. Atmos. Environ. 2005, 39, 5555–5567. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, F.; Hsieh, H.-P. U-air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 1436–1444. [Google Scholar]
- Chang, C.-C.; Li, Y.-Z.; Wu, H.-C.; Tseng, M.-H. Melanoma detection using XGB classifier combined with feature extraction and K-means SMOTE techniques. Diagnostics 2022, 12, 1747. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.R.; Khafagy, M.H.; Ali, M.; Mohamed, M.H. Predict student learning styles and suitable assessment methods using click stream. Egypt. Inform. J. 2024, 26, 100469. [Google Scholar] [CrossRef]
- Li, S.; Fu, H.; Lo, W.-L. Meteorological visibility evaluation on webcam weather image using deep learning features. Int. J. Comput. Theory Eng 2017, 9, 455–461. [Google Scholar] [CrossRef]
- Ortega, L.; Otero, L.D.; Otero, C. Application of machine learning algorithms for visibility classification. In Proceedings of the 2019 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 8–11 April 2019; pp. 1–5. [Google Scholar]
- Palvanov, A.; Cho, Y.I. Visnet: Deep convolutional neural networks for forecasting atmospheric visibility. Sensors 2019, 19, 1343. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shen, K.; Yu, P.; Shi, Q.; Ko, H. Multimodal deep fusion network for visibility assessment with a small training dataset. IEEE Access 2020, 8, 217057–217067. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Gu, X.; Yeoh, J.K.; Zhang, Q. Visibility classification and influencing-factors analysis of airport: A deep learning approach. Atmos. Environ. 2022, 278, 119085. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, M.; Chen, J.; Chen, K.; Zhang, C.; Xie, C.; Huang, B.; He, Z. Weather visibility prediction based on multimodal fusion. IEEE Access 2019, 7, 74776–74786. [Google Scholar] [CrossRef]
- Holste, G.; Partridge, S.C.; Rahbar, H.; Biswas, D.; Lee, C.I.; Alessio, A.M. End-to-end learning of fused image and non-image features for improved breast cancer classification from mri. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3294–3303. [Google Scholar]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Hussain, M.; Bird, J.J.; Faria, D.R. A study on cnn transfer learning for image classification. In Advances in Computational Intelligence Systems, Proceedings of the 18th UK Workshop on Computational Intelligence, Nottingham, UK, 5–7 September 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 191–202. [Google Scholar]
- Google Maps Platform. Available online: https://developers.google.com/maps/ (accessed on 12 December 2022).
- Department of Household Registration, Ministry of the Interior. Republic of China(Taiwan). Available online: https://www.ris.gov.tw/app/portal/346 (accessed on 12 December 2022).
- BreezoMeter. Available online: https://docs.breezometer.com/ (accessed on 12 December 2022).
- Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021; pp. 10096–10106. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Tseng, M.-H. GA-based weighted ensemble learning for multi-label aerial image classification using convolutional neural networks and vision transformers. Mach. Learn. Sci. Technol. 2023, 4, 045045. [Google Scholar] [CrossRef]
Visibility | |||||||||
---|---|---|---|---|---|---|---|---|---|
visual range (km) | <1 | 1~3 | 3~6 | 7~10 | 11~15 | 16~20 | 21~30 | >30 | total |
satellite image | |||||||||
number of data | 2683 | 216 | 85 | 5138 | 2572 | 211 | 154 | 424 | 11,483 |
23% | 2% | 1% | 45% | 22% | 2% | 1% | 4% | 100% |
Type of Feature | Feature | Maximum | Minimum | Mean |
---|---|---|---|---|
geographical location | population density | 9127.000 | 60.000 | 608.838 |
weather condition | temperature | 20.790 | −6.000 | 12.826 |
feels-like temperature | 21.850 | −12.110 | 9.792 | |
relative humidity | 99.000 | 37.000 | 74.063 | |
precipitation probability | 80.000 | 0.000 | 24.090 | |
total precipitation value | 1.800 | 0.000 | 0.054 | |
wind speed | 42.516 | 0.108 | 14.477 | |
gust | 61.380 | 2.736 | 29.270 | |
atmospheric pressure | 1024.090 | 673.210 | 961.504 | |
dew point temperature | 18.530 | −15.430 | 7.844 | |
cloud cover percentage | 100.000 | 17.000 | 80.720 | |
air quality | dominant pollutant | 4.000 | 1.000 | 3.046 |
CO concentration | 1302.080 | 140.040 | 292.096 | |
NO2 concentration | 60.800 | 2.710 | 12.386 | |
O3 concentration | 40.670 | 3.630 | 23.928 | |
PM10 concentration | 120.860 | 8.040 | 29.360 | |
PM2.5 concentration | 74.270 | 3.760 | 14.799 | |
SO2 concentration | 2.300 | 0.200 | 1.103 |
Type of Feature | Feature | Correlation Coefficient |
---|---|---|
geographical location | population density | −0.095 |
weather condition | temperature | −0.157 |
feels-like temperature | −0.161 | |
relative humidity | −0.329 | |
precipitation probability | −0.256 | |
total precipitation value | 0.024 | |
wind speed | −0.172 | |
gust | −0.111 | |
atmospheric pressure | −0.161 | |
dew point temperature | −0.324 | |
cloud cover percentage | −0.203 | |
air quality | dominant pollutant | 0.287 |
CO concentration | 0.051 | |
NO2 concentration | 0.008 | |
O3 concentration | 0.183 | |
PM10 concentration | 0.005 | |
PM2.5 concentration | 0.011 | |
SO2 concentration | 0.070 |
Pre-Trained Model | Train ACC | Test ACC |
---|---|---|
EfficientNetV2B2 | 1.000 | 0.850 |
EfficientNetV2B3 | 1.000 | 0.841 |
ResNet50 | 0.997 | 0.846 |
VGG16 | 1.000 | 0.880 |
DenseNet169 | 1.000 | 0.857 |
Architecture | Train ACC | Test ACC |
---|---|---|
MM-DL1 | 1.000 | 0.894 |
MM-DL2 | 0.975 | 0.887 |
MM-DL3 | 1.000 | 0.903 |
MM-DL4 | 0.895 | 0.854 |
Machine Learning Classifier | Train ACC | Test ACC |
---|---|---|
Decision tree | 1.000 ± 0.000 | 0.511 ± 0.011 |
Bagging | 0.990 ± 0.001 | 0.612 ± 0.006 |
Random forest | 1.000 ± 0.000 | 0.632 ± 0.008 |
GB | 0.819 ± 0.002 | 0.637 ± 0.009 |
XGB | 1.000 ± 0.000 | 0.702 ± 0.006 |
HistGB | 1.000 ± 0.000 | 0.703 ± 0.008 |
KNN | 0.879 ± 0.002 | 0.790 ± 0.009 |
Linear SVM | 0.720 ± 0.001 | 0.643 ± 0.008 |
RBF SVM | 0.803 ± 0.002 | 0.723 ± 0.010 |
GaussianNB | 0.314 ± 0.002 | 0.298 ± 0.007 |
Logistic Regression | 0.697 ± 0.002 | 0.639 ± 0.007 |
MLP | 0.991 ± 0.001 | 0.736 ± 0.009 |
Machine Learning Classifier | Train ACC | Test ACC |
---|---|---|
Decision tree | 1.000 ± 0.000 | 0.687 ± 0.012 |
Bagging | 0.992 ± 0.001 | 0.767 ± 0.011 |
Random forest | 1.000 ± 0.000 | 0.675 ± 0.012 |
GB | 0.876 ± 0.001 | 0.738 ± 0.007 |
XGB | 1.000 ± 0.000 | 0.802 ± 0.009 |
HistGB | 1.000 ± 0.000 | 0.805 ± 0.006 |
KNN | 0.881 ± 0.001 | 0.794 ± 0.009 |
Linear SVM | 0.721 ± 0.002 | 0.645 ± 0.008 |
RBF SVM | 0.809 ± 0.002 | 0.728 ± 0.010 |
GaussianNB | 0.321 ± 0.004 | 0.305 ± 0.008 |
Logistic Regression | 0.697 ± 0.002 | 0.640 ± 0.005 |
MLP | 0.994 ± 0.001 | 0.755 ± 0.005 |
Machine Learning Classifier | Train ACC | Test ACC |
---|---|---|
Decision tree | 1.000 ± 0.000 | 0.932 ± 0.005 |
Bagging | 0.997 ± 0.001 | 0.954 ± 0.004 |
Random forest | 1.000 ± 0.000 | 0.886 ± 0.006 |
GB | 0.982 ± 0.000 | 0.949 ± 0.005 |
XGB | 1.000 ± 0.000 | 0.976 ± 0.005 |
HistGB | 1.000 ± 0.000 | 0.975 ± 0.004 |
KNN | 0.921 ± 0.002 | 0.864 ± 0.007 |
Linear SVM | 0.779 ± 0.003 | 0.712 ± 0.006 |
RBF SVM | 0.864 ± 0.001 | 0.814 ± 0.008 |
GaussianNB | 0.344 ± 0.002 | 0.328 ± 0.009 |
Logistic Regression | 0.760 ± 0.003 | 0.709 ± 0.006 |
MLP | 0.999 ± 0.001 | 0.837 ± 0.006 |
Machine Learning Classifier | Train ACC | Test ACC |
---|---|---|
Decision tree | 1.000 ± 0.000 | 0.938 ± 0.006 |
Bagging | 0.998 ± 0.000 | 0.958 ± 0.006 |
Random forest | 1.000 ± 0.000 | 0.910 ± 0.008 |
GB | 0.986 ± 0.001 | 0.953 ± 0.002 |
XGB | 1.000 ± 0.000 | 0.978 ± 0.002 |
HistGB | 1.000 ± 0.000 | 0.977 ± 0.003 |
KNN | 0.926 ± 0.001 | 0.870 ± 0.005 |
Linear SVM | 0.810 ± 0.003 | 0.750 ± 0.004 |
RBF SVM | 0.878 ± 0.001 | 0.835 ± 0.008 |
GaussianNB | 0.355 ± 0.003 | 0.339 ± 0.011 |
Logistic Regression | 0.793 ± 0.002 | 0.746 ± 0.005 |
MLP | 1.000 ± 0.000 | 0.847 ± 0.006 |
Approach | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
---|---|---|---|---|
VGG16-XGB | 0.702 | 0.802 | 0.976 | 0.978 |
VGG16-HistGB | 0.703 | 0.805 | 0.975 | 0.977 |
VGG16-KNN | 0.790 | 0.794 | 0.864 | 0.870 |
VGG16-MLP | 0.736 | 0.755 | 0.837 | 0.847 |
MM-DL3 | 0.880 | 0.892 | 0.899 | 0.903 |
Year | Author | Method | Data Type | Number of Class | Data Size (Train/Test) | Test ACC |
---|---|---|---|---|---|---|
2020 | Wang et al. [9] | VisNet | ground image (RGB) | 7 | 2604/2604 | 0.865 |
Fusion-net | ground image (RGB + IR) (before image registration) | 7 | 2604/2604 | 0.963 | ||
Fusion-net | ground image (RGB + IR) (after image registration) | 7 | 2604/2604 | 0.983 | ||
2022 | Liu et al. [10] | VGG16-Xception | ground image (pseudo-color image) | 4 | 364/91 | 0.876 |
2024 | Our approach | VGG16-XGB | satellite image (RGB) + tabular data | 8 | 9186/2297 | 0.978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, H.-Y.; Tseng, M.-H. Evaluating Multimodal Techniques for Predicting Visibility in the Atmosphere Using Satellite Images and Environmental Data. Electronics 2024, 13, 2585. https://doi.org/10.3390/electronics13132585
Tsai H-Y, Tseng M-H. Evaluating Multimodal Techniques for Predicting Visibility in the Atmosphere Using Satellite Images and Environmental Data. Electronics. 2024; 13(13):2585. https://doi.org/10.3390/electronics13132585
Chicago/Turabian StyleTsai, Hui-Yu, and Ming-Hseng Tseng. 2024. "Evaluating Multimodal Techniques for Predicting Visibility in the Atmosphere Using Satellite Images and Environmental Data" Electronics 13, no. 13: 2585. https://doi.org/10.3390/electronics13132585
APA StyleTsai, H.-Y., & Tseng, M.-H. (2024). Evaluating Multimodal Techniques for Predicting Visibility in the Atmosphere Using Satellite Images and Environmental Data. Electronics, 13(13), 2585. https://doi.org/10.3390/electronics13132585