A Chua’s Chaotic Chirp Spread-Spectrum Power Spectral Homogenization Strategy Based on Distribution Transformation
Abstract
:1. Introduction
2. Implementation of CSSM-PWM Converter and Its Power Spectrum Distribution Characteristics
3. Solution and Uniformization Modification of Chaotic Signal Probability Density Function
3.1. Kernel Density Estimation Algorithm for Solving Probability Density Function of Chaotic Modulated Signals
3.2. Distribution Transformation Algorithm for Achieving Uniformization Modification of Probability Density Function
4. Global and Local Spectrum Characteristics of Power Spectrum Homogenization Strategy for Chaotic Spread-Spectrum Modulation
4.1. Global Spectrum Characteristics
4.2. Time–Frequency Analysis for Local Spectrum Characteristic Research
5. Results and Discussion
5.1. Actual Measurement of Power Spectrum for CSSM-PWM
5.2. Actual Measurement of Power Spectrum for Common-Mode Conducted EMI
6. Conclusions
- (1)
- The use of the kernel density estimation algorithm solves the problem of obtaining a smooth probability density function for high-dimensional chaotic signals.
- (2)
- A distribution transformation method is proposed, theoretically guaranteeing that the transformed chaotic signal satisfies a uniform distribution.
- (3)
- The proposed power spectrum uniformization strategy can achieve the uniform shaping of the power spectrum, obtain a uniformly distributed power spectrum, and further improve the suppression effect of Chua’s chaotic spread-spectrum modulation technology on common-mode conducted EMI.
- (4)
- The proposed chaotic spread-spectrum modulation power spectrum uniformization strategy provides a feasible solution for addressing the severe conducted EMI issues in offline power converters based on digital control systems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Equipment | Specification |
---|---|
Noise separator | EM5016 |
Spectrum analyzer | GSP-818 |
Oscilloscope | TDS 2012C, TDS 1012C-EDU |
Digital multimeter | UT61E+, UT61D |
References
- Xu, G.; Wang, X.; Zhu, W.; Xiang, D. Prognostics & Health Management Technology for Power Electronic Devices and Its Advances. CSEE Proc. 2023, 43, 1912–1926. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Wang, Z.; Zhang, Z.; Zheng, T.; Lu, Y.; Zhang, J.; Zhang, B. Review of EMI Mechanism and Suppression Methods in Power Supply System of High-speed Train. CSEE Proc. 2023, 43, 3137–3154. [Google Scholar] [CrossRef]
- Sun, S.; Lin, Z.; Tang, X.; Wei, X.; Zhao, Z. A Review of Switching Oscillation in Wide Band Gap Semiconductor Devices. CSEE Proc. 2023, 43, 6765–6775. [Google Scholar] [CrossRef]
- Xu, J.; Gu, L.; Ye, Z.; Kargarrazi, S.; Rivas-Davila, J.M. Cascode GaN/SiC: A Wide-Bandgap Heterogenous Power Device for High-Frequency Applications. IEEE Trans. Power Electron. 2020, 35, 6340–6349. [Google Scholar] [CrossRef]
- Huang, H.; Lu, T. Research on the Influence of Mutual Inductance Coefficients in EMI Filter on Filtering Performance and Its Modeling Method. CSEE Proc. 2023, 43, 276–285. [Google Scholar] [CrossRef]
- Jiang, D.; Shen, Z.; Liu, Z.; Han, X.; Wang, Q.; He, Z. Progress in Active Mitigation Technologies of Power Electronics Noise for Electrical Propulsion System. CSEE Proc. 2020, 40, 5291–5301. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, D.; Xiao, X.; Li, Y.; Xu, F. Review and Development Tendency of Research on 2~150 kHz Supraharmonics. Power Syst. Technol. 2018, 42, 353–365. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, J.; Lin, F.; Ruan, Z.; Zhang, W.; Chen, Y. Supraharmonics Transmission Characteristics in Three Phase Transformer. Power Syst. Technol. 2020, 44, 4387–4394. [Google Scholar] [CrossRef]
- Victoria, J.; Suarez, A.; Martinez, P.A.; Amaro, A.; Alcarria, A.; Torres, J.; Herraiz, R.; Solera, V.; Martinez, V.; Garcia-Olcina, R. Advanced Characterization of a Hybrid Shielding Solution for Reducing Electromagnetic Interferences at Board Level. Electronics 2024, 13, 598. [Google Scholar] [CrossRef]
- Wu, X.; Gao, X.; Wang, J.; Li, Z.; Du, S.; Gao, S.; Li, F.; Du, J.; Shchurov, N.I.; Zhang, X. Advances in Modeling and Suppression Methods of EMI in Power Electronic Converters of Third-Generation Semiconductor Devices. Electronics 2023, 12, 2348. [Google Scholar] [CrossRef]
- Xiao, X.; Liao, K.; Tang, S.; Fan, W. Development of Power-Electronized Distribution Grids and the New Supraharmonics Issues. Trans. China Electrotech. Soc. 2018, 33, 707–720. [Google Scholar] [CrossRef]
- Wang, S.; Wyk, J.D.V.; Lee, F.C. Effects of Interactions Between Filter Parasitics and Power Interconnects on EMI Filter Per-formance. IEEE Trans Ind. Electron. 2007, 54, 3344. [Google Scholar] [CrossRef]
- Narayanasamy, B.; Luo, F. A Survey of Active EMI Filters for Conducted EMI Noise Reduction in Power Electronic Converters. IEEE Trans. Electromagn. Compat. 2019, 61, 2040. [Google Scholar] [CrossRef]
- Chu, Y.; Wang, S.; Wang, Q. Modeling and Stability Analysis of Active/Hybrid Common-Mode EMI Filters for DC/DC Power Converters. IEEE Trans. Power Electron. 2016, 31, 6254. [Google Scholar] [CrossRef]
- Goswami, R.; Wang, S.; Chu, Y. Modeling and analysis of hybrid differential mode filters for AC/DC converters to suppress current ripples and EMI. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015. [Google Scholar] [CrossRef]
- Wang, S.; Maillet, Y.Y.; Wang, F.; Boroyevich, D.; Burgos, R. Investigation of Hybrid EMI Filters for Common-Mode EMI Suppression in a Motor Drive System. IEEE Trans. Power Electron. 2010, 25, 1034. [Google Scholar] [CrossRef]
- Wang, S.; Maillet, Y.Y.; Wang, F.; Boroyevich, D. Hybrid EMI filter design for common mode EMI suppression in a motor drive system. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008. [CrossRef]
- Tung, N.T.; Tuyen, N.D.; Huy, N.M.; Phong, N.H.; Cuong, N.C.; Phuong, L.M. Design and Implementation of 150 W AC/DC LED Driver with Unity Power Factor, Low THD, and Dimming Capability. Electronics 2020, 9, 52. [Google Scholar] [CrossRef]
- Chien, W.; Cheng, Y.; Hsiao, C.; Han, K.; Chiu, C. Research on Anti-Radiation Noise Interference of High Definition Multi-media Interface Circuit Layout of a Laptop. Electronics 2020, 9, 426. [Google Scholar] [CrossRef]
- Li, H.; Ding, Y.; Zhang, C.; Yang, Z.; Yang, Z.; Zhang, B. A Compact EMI Filter Design by Reducing the Common-Mode Inductance With Chaotic PWM Technique. IEEE Trans. Power Electron. 2022, 37, 473. [Google Scholar] [CrossRef]
- Stepins, D.; Shah, D.D.; Sokolovs, A.; Zakis, J. An Improved Spread-Spectrum Technique for Reduction of Electromagnetic Emissions of Wireless Power Transfer Systems. Electronics 2022, 11, 2733. [Google Scholar] [CrossRef]
- Yousaf, J.; Faisal, M.; Nah, W.; Ghazal, M.; Sarmad Mahmmod, R.; Rmili, H. Effects of Random Switching Schemes on the EMI Levels of Conventional and Interleaved Buck Converters for Mobile Devices. Electronics 2022, 11, 306. [Google Scholar] [CrossRef]
- Fan, W.; Shi, Y.; Chen, Y. A Method for CM EMI Suppression on PFC Converter Using Lossless Snubber with Chaotic Spread Spectrum. Energies 2023, 16, 3583. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, D.; Sun, W.; Shen, Z.; Zhang, Y. A Family of Spread-Spectrum Modulation Schemes Based on Distribution Characteristics to Reduce Conducted EMI for Power Electronics Converters. IEEE Trans. Ind. Appl. 2020, 56, 5142–5157. [Google Scholar] [CrossRef]
- Gamoudi, R.; Chariag, D.E.; Sbita, L. A Review of Spread-Spectrum-Based PWM Techniques—A Novel Fast Digital Implementation. IEEE Trans. Power Electron. 2018, 33, 10292–10307. [Google Scholar] [CrossRef]
- Callegari, S.; Setti, G.; Langlois, P. A CMOS tailed tent map for the generation of uniformly distributed chaotic sequences. In Proceedings of the 1997 IEEE International Symposium on Circuits and Systems (ISCAS), Hong Kong, China, 12 June 1997. [Google Scholar] [CrossRef]
- Qi, C.; Chen, X.; Mu, X. A Hybrid Spread Spectrum Modulation Technique for PWM Inverters. CSEE Proc. 2012, 32, 38–44. [Google Scholar] [CrossRef]
- Li, S.; He, G.; Chen, Y.; Jiang, L.; Qin, L. Research on Conduction EMI Suppression of High Frequency Isolated Quasi Z-source Inverter Based on Multi-scroll Chaos of Chen System. High. Volt. Eng. 2019, 45, 2545–2552. [Google Scholar] [CrossRef]
- Callegari, S.; Rovatti, R.; Setti, G. Spectral properties of chaos-based FM signals: Theory and simulation results. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2003, 50, 3–15. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, B. Spectrum Characteristics and Spectrum Optimizing Design of Chaotic PWM Based on Invariable Distribution. Acta Electron. Sin. 2007, 35, 2150–2155. [Google Scholar]
- Tang, X.; Xu, Z.; Li, F.; Li, Z.; Liu, L.; Yang, C.; Huang, H.B.; Chen, L.Y.; Zhang, X.G. A Physical Layer Security-Enhanced Scheme in CO-OFDM System Based on CIJS Encryption and 3D-LSCM Chaos. J. Light. Technol. 2022, 40, 3567–3575. [Google Scholar] [CrossRef]
- Tse, K.K.; Ng, R.W.; Chung, H.S.; Hui, S.Y.R.H. An evaluation of the spectral characteristics of switching converters with chaotic carrier-frequency modulation. IEEE Trans. Ind. Electron. 2003, 50, 171–182. [Google Scholar] [CrossRef]
- Callegari, S.; Rovatti, R.; Setti, G. Chaos-based FM signals: Application and implementation issues. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2003, 50, 1141–1147. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Ding, Y.; Wang, J. Continuous Multi-Scroll Chaotic PWM and its Chaotic Signal Selection Method for EMI Sup-pression of Power Converters. IEEE Access 2020, 8, 168910–168922. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Zhang, L.; Pareschi, F.; Setti, G.; Chen, G. From Chaos to Pseudorandomness: A Case Study on the 2-D Coupled Map Lattice. IEEE Trans. Cybern. 2023, 53, 1324–1334. [Google Scholar] [CrossRef] [PubMed]
- Rovatti, R.; Setti, G.; Callegari, S. Limit properties of folded sums of chaotic trajectories. IEEE Trans. Circuits Syst. I Fun-Dam. Theory Appl. 2002, 49, 1736–1744. [Google Scholar] [CrossRef]
- Setti, G.; Mazzini, G.; Rovatti, R.; Callegari, S. Statistical modeling of discrete-time chaotic processes-basic finite-dimensional tools and applications. Proc. IEEE 2002, 90, 662–690. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, S.; Chen, Y. Experimental study on the suppressing EMI level of DC-DC converter with chaotic map. CSEE Proc. 2006, 26, 76–81. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, B. Experiment and mechanism research of chaotic PWM of converter in EMI suppressing. CSEE Proc. 2007, 27, 114–119. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S. A Survey of EMI Research in Power Electronics Systems With Wide-Bandgap Semiconductor Devices. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 626–643. [Google Scholar] [CrossRef]
- Balestra, M.; Bellini, A.; Callegari, S.; Rovatti, R.; Setti, G. Chaos-Based Generation of PWM-Like Signals for Low-EMI Induction Motor Drives: Analysis and Experimental Results. IEICE Trans. Electron. 2004, E87-C, 66–75. [Google Scholar]
- Zong, X.; Fei, S.; Zhao, J.; Zhang, A. Mathematical Statistics with Applications in MATLAB, 1st ed.; China Machine Press: Beijing, China, 2015; pp. 158–160. ISBN 978-7-111-50423-8. [Google Scholar]
- Li, H.; Ding, Y.; Yang, Z.; Jiang, Y. Optimization Design of EMI Filter with Chaotic PWM in DC-DC Converters. In Proceedings of the 2019 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Taipei, China, 23–25 May 2019. [Google Scholar] [CrossRef]
Parameter | Specification or Value |
---|---|
DSP | TMS320F28335PGFA |
MOSFET | CS9N90 |
MOSFET | SMF5N60 |
Diode | AIDW10S65C5 |
input voltage | 180 V~235 V ac |
output voltage | 15 V dc |
rated power | 45 W |
transformer magnetic core | PQ3535 |
transformer excitation inductance | 495.9 μH |
primary coil leakage inductance | 8.03 μH |
resonant capacitor | 0.1 μF |
voltage sensor | LV25-P |
current sensor | LA25-NP |
output capacitor | 100 μF |
operational amplifier | LM358 |
Control Mode | f/kHz | Mag. 1/dBμV | Suppression/dB |
---|---|---|---|
conventional PWM | 200.0 | 79.61 | -- |
CSSM-PWM | 198.0 | 66.43 | 13.18 |
CSSM-PWM | 221.2 | 63.35 | 16.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Chen, B.; Liu, B.; Zhang, Y.; Liang, Q.; Chen, Y. A Chua’s Chaotic Chirp Spread-Spectrum Power Spectral Homogenization Strategy Based on Distribution Transformation. Electronics 2024, 13, 2296. https://doi.org/10.3390/electronics13122296
Yang Z, Chen B, Liu B, Zhang Y, Liang Q, Chen Y. A Chua’s Chaotic Chirp Spread-Spectrum Power Spectral Homogenization Strategy Based on Distribution Transformation. Electronics. 2024; 13(12):2296. https://doi.org/10.3390/electronics13122296
Chicago/Turabian StyleYang, Zaixue, Bing Chen, Bin Liu, Yao Zhang, Qian Liang, and Yanming Chen. 2024. "A Chua’s Chaotic Chirp Spread-Spectrum Power Spectral Homogenization Strategy Based on Distribution Transformation" Electronics 13, no. 12: 2296. https://doi.org/10.3390/electronics13122296
APA StyleYang, Z., Chen, B., Liu, B., Zhang, Y., Liang, Q., & Chen, Y. (2024). A Chua’s Chaotic Chirp Spread-Spectrum Power Spectral Homogenization Strategy Based on Distribution Transformation. Electronics, 13(12), 2296. https://doi.org/10.3390/electronics13122296