LDPC-Net: A Lightweight Detail–Content Progressive Coupled Network for Single-Image Dehazing with Adaptive Feature Extraction Block
Abstract
:1. Introduction
2. Related Work
2.1. Prior-Based Dehazing
2.2. Learning-Based Dehazing
3. The Proposed Method
3.1. Initial Feature Extraction Module
3.1.1. Detail Feature Extraction Module
3.1.2. Content Feature Extraction Module
3.2. Progressive Coupled Module
3.3. Joint Estimation Module
3.4. Lightweight Adaptive Feature Extraction Block
3.5. Loss Function
4. Experimental Results
4.1. Experimental Settings
4.2. Qualitative Comparison
4.3. Quantitative Evaluations
4.4. Ablation Analysis
4.4.1. Effectiveness of the Lightweight Adaptive Feature Extraction Block
4.4.2. Effectiveness of the Joint Estimation Module
4.4.3. Effectiveness of the Cross-Scale Information Interaction Block
4.4.4. Effectiveness of the Loss Function
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 2019, 28, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Qu, Y.; Lin, S.; Zhou, J.; Qiao, R.; Zhang, Z.; Xie, Y.; Ma, L. Contrastive Learning for Compact Single Image Dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 10551–10560. [Google Scholar]
- Fu, C.; Yuan, H.; Xu, H.; Zhang, H.; Shen, L. TMSO-Net: Texture adaptive multi-scale observation for light field image depth estimation. J. Vis. Commun. Image Represent. 2023, 90, 103731. [Google Scholar] [CrossRef]
- Qi, F.; Tan, X.; Zhang, Z.; Chen, M.; Xie, Y.; Ma, L. Glass Makes Blurs: Learning the Visual Blurriness for Glass Surface Detection. IEEE Trans. Ind. Inform. 2024, 20, 6631–6641. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Learn. 2011, 33, 2341–2353. [Google Scholar]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-Net: All-in-one dehazing network. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4770–4778. [Google Scholar]
- Cantor, A. Optics of the atmosphere–Scattering by molecules and particles. IEEE J. Quantum Electron. 1978, 14, 698–699. [Google Scholar] [CrossRef]
- Narasimhan, S.G.; Nayar, S.K. Chromatic framework for vision in bad weather. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 15 June 2000. [Google Scholar]
- Narasimhan, S.G.; Nayar, S.K. Vision and the atmosphere. Int. J. Comput. Vis. 2002, 48, 233–254. [Google Scholar] [CrossRef]
- Zhu, Q.; Mai, J.; Shao, L. A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [PubMed]
- Fattal, R. Dehazing Using Color-Lines. ACM Trans. Graph. 2014, 34, 1–14. [Google Scholar] [CrossRef]
- Tan, R.T. Visibility in bad weather from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Fattal, R. Single image dehazing. ACM Trans. Graph. 2008, 27, 1–9. [Google Scholar] [CrossRef]
- Berman, D.; Treibitz, T.; Avidan, S. Non-local image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1674–1682. [Google Scholar]
- Cui, Z.; Sheng, H.; Yang, D.; Wang, S.; Chen, R.; Ke, W. Light Field Depth Estimation for Non-Lambertian Objects via Adaptive Cross Operator. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 1199–1211. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, X. Orthorectification Model for Extra-Length Linear Array Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4709710. [Google Scholar] [CrossRef]
- Xing, J.; Yuan, H.; Hamzaoui, R.; Liu, H.; Hou, J. GQE-Net: A Graph-Based Quality Enhancement Network for Point Cloud Color Attribute. IEEE Trans. Image Process. 2023, 32, 6303–6317. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.H. Single image dehazing via multi-scale convolutional neural networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 154–169. [Google Scholar]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Patel, V.M. Densely connected pyramid dehazing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 3194–3203. [Google Scholar]
- Hong, M.; Xie, Y.; Li, C.; Qu, Y. Distilling Image Dehazing With Heterogeneous Task Imitation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 3459–3468. [Google Scholar]
- Ren, W.; Ma, L.; Zhang, J.; Pan, J.; Cao, X.; Liu, W.; Yang, M.H. Gated fusion network for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 3253–3261. [Google Scholar]
- Dong, H.; Pan, J.; Xiang, L.; Hu, Z.; Zhang, X.; Wang, F.; Yang, M.H. Multi-Scale Boosted Dehazing Network With Dense Feature Fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 2154–2164. [Google Scholar]
- Liu, X.; Ma, Y.; Shi, Z.; Chen, J. Griddehazenet: Attention-based multi-scale network for image dehazing. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7313–7322. [Google Scholar]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature Fusion Attention Network for Single Image Dehazin. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 11908–11915. [Google Scholar]
- Chen, D.; He, M.; Fan, Q.; Liao, J.; Zhang, L.; Hou, D.; Yuan, L.; Hua, G. Gated Context Aggregation Network for Image Dehazing and Deraining. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 1375–1383. [Google Scholar]
- Pang, Y.; Nie, J.; Xie, J.; Han, J.; Li, X. BidNet: Binocular Image Dehazing Without Explicit Disparity Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 5930–5939. [Google Scholar]
- Qu, Y.; Chen, Y.; Huang, J.; Xie, Y. Enhanced Pix2pix Dehazing Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8152–8160. [Google Scholar]
- Li, L.; Dong, Y.; Ren, W.; Pan, J.; Gao, C.; Sang, N.; Yang, M.H. Semi-Supervised Image Dehazing. IEEE Trans. Image Process. 2020, 29, 2766–2779. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, H.; Hu, K.; Yin, G.; Wei, Z. IA-Net: An Inception–Attention-Module-Based Network for Classifying Underwater Images from Others. IEEE J. Ocean. Eng. 2022, 47, 704–717. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, W.; Zheng, Y.; Wang, R. SDBAD-Net: A Spatial Dual-Branch Attention Dehazing Network Based on Meta-Former Paradigm. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 60–70. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, Y.; Liu, R.W.; Lu, Y.; Qu, J.; He, S.; Ren, W. SCANet: Self-Paced Semi-Curricular Attention Network for Non-Homogeneous Image Dehazing. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 17–24 June 2023; pp. 1885–1894. [Google Scholar]
- Guo, C.; Yan, Q.; Anwar, S.; Cong, R.; Ren, W.; Li, C. Image Dehazing Transformer with Transmission-Aware 3D Position Embedding. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 5802–5810. [Google Scholar]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision Transformers for Single Image Dehazing. IEEE Trans. Image Process. 2023, 32, 1927–1941. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ren, W.; Cao, X.; Hu, X.; Wang, T.; Song, F.; Jia, X. Ultra-High-Definition Image Dehazing via Multi-Guided Bilateral Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16185–16194. [Google Scholar]
- Chen, Z.; Wang, Y.; Yang, Y.; Liu, D. PSD: Principled Synthetic-to-Real Dehazing Guided by Physical Priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 19–25 June 2021; pp. 7180–7189. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2480–2495. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946v5. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; Timofte, R. NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 1798–1805. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; Sbert, M.; Timofte, R. Dense-Haze: A Benchmark for Image Dehazing with Dense-Haze and Haze-Free Images. In Proceedings of the IEEE International Conference on Image Processing, Salt Lake City, UT, USA, 22–25 September 2019; pp. 1014–1018. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Reisenhofer, R.; Bosse, S.; Kutyniok, G.; Wiegand, T. A Haar wavelet-based perceptual similarity index for image quality assessment. Signal Process. Image Commun. 2018, 61, 33–43. [Google Scholar] [CrossRef]
Method | Reference | RESIDE | Param | ||
---|---|---|---|---|---|
PSNR (dB) | SSIM | PSI | |||
DCP [5] | TPAMI 11 | 16.16 | 0.855 | 0.648 | - |
DehazeNet [19] | TIP16 | 19.82 | 0.821 | 0.869 | 0.009 M |
AOD-Net [6] | ICCV 17 | 20.15 | 0.816 | 0.797 | 0.002 M |
GFN [22] | CVPR 18 | 24.91 | 0.919 | 0.879 | 0.499 M |
GDN [24] | ECCV 19 | 32.16 | 0.984 | 0.976 | 0.956 M |
FFA-Net [25] | AAAI 20 | 36.39 | 0.989 | - | 4.456 M |
KDDN [21] | CVPR 20 | 34.72 | 0.985 | - | 2.4 M |
AECR-Net [2] | CVPR 21 | 37.17 | 0.990 | 0.983 | 2.61 M |
DeHamer [33] | CVPR 22 | 36.63 | 0.988 | 0.973 | 29.44 M |
Dehazeformer-S [34] | TIP 23 | 36.82 | 0.992 | 0.982 | 1.28 M |
SDBAD-Net [31] | TCSVT 24 | 37.87 | 0.988 | - | 2.23 M |
(Ours) LDPC-Net | - | 38.57 | 0.992 | 0.983 | 0.708 M |
Method | Reference | NH-HAZE | Param | ||
---|---|---|---|---|---|
PSNR (dB) | SSIM | PSI | |||
DCP [5] | TPAMI 11 | 12.30 | 0.448 | 0.288 | - |
DehazeNet [19] | TIP 16 | 11.76 | 0.399 | 0.294 | 0.009 M |
AOD-Net [6] | ICCV 17 | 16.10 | 0.536 | 0.396 | 0.002 M |
GFN [22] | CVPR 18 | 17.17 | 0.597 | 0.464 | 0.499 M |
GDN [24] | ECCV 19 | 18.14 | 0.641 | 0.501 | 0.956 M |
FFA-Net [25] | AAAI 20 | 19.87 | 0.692 | - | 4.456 M |
KDDN [21] | CVPR 20 | 17.39 | 0.590 | - | 2.4 M |
AECR-Net [2] | CVPR 21 | 19.88 | 0.717 | 0.574 | 2.61 M |
DeHamer [33] | CVPR 22 | 20.66 | 0.684 | 0.578 | 29.44 M |
Dehazeformer-S [34] | TIP 23 | 20.47 | 0.713 | - | 1.28 M |
SCA-Net [32] | CVPR 23 | 19.52 | 0.649 | 0.569 | 2.39 M |
SDBAD-Net [31] | TCSVT 24 | 19.89 | 0.743 | - | 2.23 M |
(Ours) LDPC-Net | - | 20.23 | 0.665 | 0.572 | 0.708 M |
Method | Reference | DENSE-HAZE | Param | ||
---|---|---|---|---|---|
PSNR (dB) | SSIM | PSI | |||
DCP [5] | TPAMI 11 | 9.26 | 0.447 | 0.218 | - |
DehazeNet [19] | TIP 16 | 9.48 | 0.438 | 0.220 | 0.009 M |
AOD-Net [6] | ICCV 17 | 13.77 | 0.468 | 0.251 | 0.002 M |
GFN [22] | CVPR 18 | 17.47 | 0.461 | 0.393 | 0.499 M |
GDN [24] | ECCV 19 | 15.23 | 0.510 | 0.501 | 0.956 M |
FFA-Net [25] | AAAI 20 | 14.39 | 0.452 | - | 4.456 M |
KDDN [21] | CVPR 20 | 14.28 | 0.486 | - | 2.4 M |
AECR-Net [2] | CVPR 21 | 15.80 | 0.466 | 0.436 | 2.61 M |
DeHamer [33] | CVPR 22 | 16.62 | 0.560 | 0.401 | 29.44 M |
Dehazeformer-S [34] | TIP 23 | 16.29 | 0.510 | - | 1.28 M |
(Ours) LDPC-Net | - | 16.83 | 0.581 | 0.431 | 0.708 M |
Models | PSNR (dB) | SSIM | Param (M) |
---|---|---|---|
LDPC-Net-RB | 36.87 | 0.9897 | 1.01 M |
LDPC-Net-RDB | 37.59 | 0.9913 | 1.03 M |
LDPC-Net | 38.57 | 0.9923 | 0.708 M |
Models | PSNR (dB) | SSIM | Param (M) |
---|---|---|---|
LDPC-Net | 38.57 | 0.9923 | 0.708 M |
LDPC-Net (w/o JES) | 37.71 | 0.9911 | 0.701 M |
Numbers | PSNR (dB) | SSIM | Param (M) |
---|---|---|---|
2 | 37.21 | 0.9905 | 0.530 M |
3 | 38.01 | 0.9914 | 0.619 M |
4 | 38.57 | 0.9923 | 0.708 M |
5 | 38.64 | 0.9924 | 0.797 M |
Models | LDPC-Net-L1 | LDPC-Net-L2 | LDPC-Net-L2-C | LDPC-Net |
---|---|---|---|---|
PSNR (dB) | 36.95 | 36.73 | 38.23 | 38.57 |
SSIM | 0.9862 | 0.9855 | 0.9913 | 0.9923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Liu, H.; Li, S. LDPC-Net: A Lightweight Detail–Content Progressive Coupled Network for Single-Image Dehazing with Adaptive Feature Extraction Block. Electronics 2024, 13, 1867. https://doi.org/10.3390/electronics13101867
Dai L, Liu H, Li S. LDPC-Net: A Lightweight Detail–Content Progressive Coupled Network for Single-Image Dehazing with Adaptive Feature Extraction Block. Electronics. 2024; 13(10):1867. https://doi.org/10.3390/electronics13101867
Chicago/Turabian StyleDai, Lingrui, Hongrui Liu, and Shuoshi Li. 2024. "LDPC-Net: A Lightweight Detail–Content Progressive Coupled Network for Single-Image Dehazing with Adaptive Feature Extraction Block" Electronics 13, no. 10: 1867. https://doi.org/10.3390/electronics13101867
APA StyleDai, L., Liu, H., & Li, S. (2024). LDPC-Net: A Lightweight Detail–Content Progressive Coupled Network for Single-Image Dehazing with Adaptive Feature Extraction Block. Electronics, 13(10), 1867. https://doi.org/10.3390/electronics13101867