A Kalman Filter Scheme for the Optimization of Low-Cost Gas Sensor Measurements
Abstract
:1. Introduction
2. Theoretical Background
2.1. Kalman Filter
2.2. N4SID Algorithm
2.3. Indicators for the Forecasting Error Evaluation
3. Related Work
4. Experimental System and Procedure
4.1. System Overview
4.2. Experimental Procedure Overview
- -
- Upon positive confirmation of packet delivery, the averages of the measurements are calculated, and a check to identify whether packets are recorded on the memory card is conducted. In the case where no packets are recorded, the loop starts from the beginning. In the case where are packets recorded on the memory card, with the last in, first out (LIFO) method, a packet is sent to the server with a check that it was indeed received, and so on.
- -
- If the confirmation of receiving the package fails, the data are stored on the memory card. Next, the averages of the measurements are calculated, and the loop starts from the beginning.
4.3. Electrochemical Sensor Correction
5. Experimental Results and Discussion
5.1. Experimental Results
5.2. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, X.; Zhang, T.; Ji, C.; Zhai, Y.; Shen, X.; Hong, J. Threats to Human Health and Ecosystem: Looking for Air-Pollution Related Damage since 1990. Renew. Sustain. Energy Rev. 2021, 145, 111146. [Google Scholar] [CrossRef]
- Li, W.-W. Air Pollution, Air Quality, Vehicle Emissions, and Environmental Regulations. In Traffic-Related Air Pollution; Elsevier: Amsterdam, The Netherlands, 2020; pp. 23–49. [Google Scholar] [CrossRef]
- Miller, L.; Xu, X. Ambient PM2.5 Human Health Effects—Findings in China and Research Directions. Atmosphere 2018, 9, 424. [Google Scholar] [CrossRef]
- Dastoorpoor, M.; Riahi, A.; Yazdaninejhad, H.; Borsi, S.H.; Khanjani, N.; Khodadadi, N.; Mohammadi, M.J.; Aghababaeian, H. Exposure to Particulate Matter and Carbon Monoxide and Cause-Specific Cardiovascular-Respiratory Disease Mortality in Ahvaz. Toxin Rev. 2020, 40, 1362–1372. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, D. Exposure to Outdoor Air Pollution and Its Human Health Outcomes: A Scoping Review. PLoS ONE 2019, 14, e0216550. [Google Scholar] [CrossRef]
- Christakis, I.; Moutzouris, K.; Tsakiridis, O.; Stavrakas, I. Barometric Pressure as a correction factor for low-cost particulate matter sensors. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Athens, Greece, 2022; Volume 1123. [Google Scholar]
- Han, P.; Mei, H.; Liu, D.; Zeng, N.; Tang, X.; Wang, Y.; Pan, Y. Calibrations of Low-Cost Air Pollution Monitoring Sensors for CO, NO2, O3, and SO2. Sensors 2021, 21, 256. [Google Scholar] [CrossRef]
- Migos, T.; Christakis, I.; Moutzouris, K.; Stavrakas, I. On the Evaluation of Low-cost PM Sensors for Air Quality Estimation. In Proceedings of the 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019. [Google Scholar] [CrossRef]
- Bauerová, P.; Šindelářová, A.; Rychlík, Š.; Novák, Z.; Keder, J. Low-Cost Air Quality Sensors: One-Year Field Comparative Measurement of Different Gas Sensors and Particle Counters with Reference Monitors at Tušimice Observatory. Atmosphere 2020, 11, 492. [Google Scholar] [CrossRef]
- Liu, X.; Jayaratne, R.; Thai, P.; Kuhn, T.; Zing, I.; Christensen, B.; Lamont, R.; Dunbabin, M.; Zhu, S.; Gao, J.; et al. Low-Cost Sensors as an Alternative for Long-Term Air Quality Monitoring. Environ. Res. 2020, 185, 109438. [Google Scholar] [CrossRef]
- Kang, Y.; Aye, L.; Ngo, T.D.; Zhou, J. Performance Evaluation of Low-Cost Air Quality Sensors: A Review. Sci. Total Environ. 2021, 818, 151769. [Google Scholar] [CrossRef]
- Christakis, I.; Hloupis, G.; Tsakiridis, O.; Stavrakas, I. Integrated open source air quality monitoring platform. In Proceedings of the 11th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022. [Google Scholar] [CrossRef]
- Riddick, S.N.; Mauzerall, D.L.; Celia, M.; Allen, G.; Pitt, J.; Kang, M.; Riddick, J.C. The Calibration and Deployment of a Low-Cost Methane Sensor. Atmos. Environ. 2020, 230, 117440. [Google Scholar] [CrossRef]
- Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.P.; Lv, Q.; Hannigan, M.; et al. The next Generation of Low-Cost Personal Air Quality Sensors for Quantitative Exposure Monitoring. Atmos. Meas. Tech. 2014, 7, 3325–3336. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077. [Google Scholar] [CrossRef]
- Gamboa, V.S.; Kinast, É.J.; Pires, M. System for Performance Evaluation and Calibration of Low-Cost Gas Sensors Applied to Air Quality Monitoring. Atmos. Pollut. Res. 2023, 14, 101645. [Google Scholar] [CrossRef]
- Margaritis, D.; Keramydas, C.; Papachristos, I.; Lambropoulou, D. Calibration of Low-Cost Gas Sensors for Air Quality Monitoring. Aerosol Air Qual. Res. 2021, 21, 210073. [Google Scholar] [CrossRef]
- Casey, J.G.; Hannigan, M.P. Testing the Performance of Field Calibration Techniques for Low-Cost Gas Sensors in New Deployment Locations: Across a County Line and across Colorado. Atmos. Meas. Tech. 2018, 11, 6351–6378. [Google Scholar] [CrossRef]
- Topalovic, D.; Davidović, M.; Jovanović, M.; Bartonova, A.; Ristovski, Z.; Jovasevic-Stojanovic, M. In Search of an Optimal In-Field Calibration Method of Low-Cost Gas Sensors for Ambient Air Pollutants: Comparison of Linear, Multilinear and Artificial Neural Network Approaches. Atmos. Environ. 2019, 213, 640–658. [Google Scholar] [CrossRef]
- Gonzalez, A.; Boies, A.; Swason, J.; Kittelson, D. Field Calibration of Low-Cost Air Pollution Sensors. Atmos. Meas. Tech. Discuss. 2019, 1–17. [Google Scholar] [CrossRef]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35. [Google Scholar] [CrossRef]
- Shang, Z.; Deng, T.; He, J.; Duan, X. A Novel Model for Hourly PM2.5 Concentration Prediction Based on CART and EELM. Sci. Total Environ. 2019, 651, 3043–3052. [Google Scholar] [CrossRef]
- Djebbri, N.; Rouainia, M. Artificial neural networks based air pollution monitoring in industrial sites. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Mercer, L.D.; Szpiro, A.A.; Sheppard, L.; Lindström, J.; Adar, S.D.; Allen, R.W.; Avol, E.L.; Oron, A.P.; Larson, T.; Liu, L.-J.; et al. Comparing Universal Kriging and Land-Use Regression for Predicting Concentrations of Gaseous Oxides of Nitrogen (NOx) for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Atmos. Environ. 2011, 45, 4412–4420. [Google Scholar] [CrossRef]
- Christakis, I.; Tsakiridis, O.; Kandris, D.; Stavrakas, I. Air Pollution Monitoring via Wireless Sensor Networks: The Investigation and Correction of the Aging Behavior of Electrochemical Gaseous Pollutant Sensors. Electronics 2023, 12, 1842. [Google Scholar] [CrossRef]
- Al-Janabi, S.; Rawat, S.; Patel, A.; Al-Shourbaji, I. Design and Evaluation of a Hybrid System for Detection and Prediction of Faults in Electrical Transformers. Int. J. Electr. Power Energy Syst. 2015, 67, 324–335. [Google Scholar] [CrossRef]
- Dueñas, C.; Fernández, M.C.; Cañete, S.; Carretero, J.; Liger, E. Analyses of Ozone in Urban and Rural Sites in Málaga (Spain). Chemosphere 2004, 56, 631–639. [Google Scholar] [CrossRef]
- Hua, S.; Wang, S.; Jin, S.; Feng, S.; Wang, B. Wind Speed Optimisation Method of Numerical Prediction for Wind Farm Based on Kalman Filter Method. J. Eng. 2017, 2017, 1146–1149. [Google Scholar] [CrossRef]
- Apriliani, E.; Arif, D.K.; Sanjoyo, B.A. The square root ensemble Kalman filter to estimate the concentration of air pollution. In Proceedings of the 2010 IEEE, International Conference on Mathematical Application in Engineering (ICMAE’10), Kuala Lumpur, Malaysia, 3–5 August 2010. [Google Scholar]
- Lai, X.; Yang, T.; Wang, Z.; Chen, P. IoT Implementation of Kalman Filter to Improve Accuracy of Air Quality Monitoring and Prediction. Appl. Sci. 2019, 9, 1831. [Google Scholar] [CrossRef]
- Metia, S.; Oduro, S.D.; Ha, Q.P.; Duc, H.; Azzi, M. Environmental Time Series Analysis and Estimation with Extended Kalman Filtering. In Proceedings of the 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation, Kota Kinabalu, Malaysia, 3–5 December 2013. [Google Scholar] [CrossRef]
- Galanis, G.; Louka, P.; Katsafados, P.; Pytharoulis, I.; Kallos, G. Applications of Kalman Filters Based on Non-Linear Functions to Numerical Weather Predictions. Ann. Geophys. 2006, 24, 2451–2460. [Google Scholar] [CrossRef]
- Achar, A.; Bharathi, D.; Kumar, B.A.; Vanajakshi, L. Bus Arrival Time Prediction: A Spatial Kalman Filter Approach. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1298–1307. [Google Scholar] [CrossRef]
- Kumar, S.V. Traffic Flow Prediction Using Kalman Filtering Technique. Procedia Eng. 2017, 187, 582–587. [Google Scholar] [CrossRef]
- Mastali, M.; Vazquez-Arenas, J.; Fraser, R.; Fowler, M.; Afshar, S.; Stevens, M. Battery State of the Charge Estimation Using Kalman Filtering. J. Power Sources 2013, 239, 294–307. [Google Scholar] [CrossRef]
- Fitria, R.; Arif, D.K. State Variable Estimation of Nonisothermal Continuous Stirred Tank Reactor Using Fuzzy Kalman Filter. Int. J. Comput. Sci. Appl. Math. 2017, 3, 16. [Google Scholar] [CrossRef]
- Soubdhan, T.; Ndong, J.; Ould-Baba, H.; Do, M.-T. A Robust Forecasting Framework Based on the Kalman Filtering Approach with a Twofold Parameter Tuning Procedure: Application to Solar and Photovoltaic Prediction. Sol. Energy 2016, 131, 246–259. [Google Scholar] [CrossRef]
- Arif, D.K.; Adzkiya, D.; Aditya, P.; Winata, F.; Agustin, D.; Habibi, M.R.; Ririsati, A.; Prasyanto, R. Modeling of Three-Dimensional Radar Tracking System and Its Estimation Using Extended Kalman Filter. In Proceedings of the 2017 5th International Conference on Instrumentation, Control, and Automation (ICA), Yogyakarta, Indonesia, 9–11 August 2017. [Google Scholar] [CrossRef]
- Leleux, D.; Claps, R.; Chen, W.; Tittel, F.K.; Harman, T.L. Applications of Kalman Filtering to Real-Time Trace Gas Concentration Measurements. Appl. Phys. B 2002, 74, 85–93. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, K.; Kumar, U.; Lauwaet, D.; Blyth, L.; Lefebvre, W. Kalman Filter-Based Air Quality Forecast Adjustment. Atmos. Environ. 2012, 50, 381–384. [Google Scholar] [CrossRef]
- Metia, S.; Nguyen, H.A.D.; Ha, Q.P. IoT-Enabled Wireless Sensor Networks for Air Pollution Monitoring with Extended Fractional-Order Kalman Filtering. Sensors 2021, 21, 5313. [Google Scholar] [CrossRef] [PubMed]
- Kandris, D.; Nakas, C.; Vomvas, D.; Koulouras, G. Applications of Wireless Sensor Networks: An Up-To-Date Survey. Appl. Syst. Innov. 2020, 3, 14. [Google Scholar] [CrossRef]
- Evangelakos, E.A.; Kandris, D.; Rountos, D.; Tselikis, G.; Anastasiadis, E. Energy Sustainability in Wireless Sensor Networks: An Analytical Survey. J. Low Power Electron. Appl. 2022, 12, 65. [Google Scholar] [CrossRef]
- Christakis, I.; Hloupis, G.; Stavrakas, I.; Tsakiridis, O. Low-cost sensor implementation and evaluation for measuring NO2 and O3 pollutants. In Proceedings of the 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 7–9 September 2020. [Google Scholar] [CrossRef]
- Alphasense UK-Browse Gas Sensors & Air Quality Monitors. Alphasense. Available online: http://www.alphasense.com (accessed on 14 June 2023).
- PMS5003---Laser PM2.5 Sensor-Plantower Technology. Available online: https://www.plantower.com/en/products_33/74.html (accessed on 14 June 2023).
- Air Pollution Measurement Data. Ministry of Environment & Energy, Greece. Available online: https://ypen.gov.gr/perivallon/poiotita-tis-atmosfairas/dedomena-metriseon-atmosfairikis-rypansis/ (accessed on 14 June 2023).
- Alphasense Application Note AAN 803-01 Correcting for Background Currents in Four Electrode Toxic Gas Sensors. 2014. Available online: https://zueriluft.ch/makezurich/AAN803.pdf (accessed on 5 December 2023).
- Cross, E.S.; Williams, L.R.; Lewis, D.K.; Magoon, G.R.; Onasch, T.B.; Kaminsky, M.L.; Worsnop, D.R.; Jayne, J.T. Use of Electrochemical Sensors for Measurement of Air Pollution: Correcting Interference Response and Validating Measurements. Atmos. Meas. Tech. 2017, 10, 3575–3588. [Google Scholar] [CrossRef]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L. A Machine Learning Calibration Model Using Random Forests to Improve Sensor Performance for Lower-Cost Air Quality Monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, F.; Hong, X.; Wang, P. A Sensor Bias Correction Method for Reducing the Uncertainty in the Spatiotemporal Fusion of Remote Sensing Images. Remote Sens. 2022, 14, 3274. [Google Scholar] [CrossRef]
- Petetin, H.; Bowdalo, D.; Bretonnière, P.A.; Guevara, M.; Jorba, O.; Mateu Armengol, J.; Samso Cabre, M.; Serradell, K.; Soret, A.; Pérez Garcia-Pando, C. Model Output Statistics (MOS) Applied to Copernicus Atmospheric Monitoring Service (CAMS) O3 Forecasts: Trade-Offs between Continuous and Categorical Skill Scores. Atmos. Chem. Phys. 2022, 22, 11603–11630. [Google Scholar] [CrossRef]
N1 NO2 | N2 NO2 | N3 NO2 | N1 O3 | N2 O3 | N3 O3 | |
---|---|---|---|---|---|---|
Fit to estimation data (%) | 45.47 | 46.00 | 44.00 | 62.14 | 62.11 | 62.29 |
MSE | 79.51 | 77.98 | 83.88 | 141.3 | 141.5 | 140.2 |
N1 NO2 | N2 NO2 | N3 NO2 | N1 O3 | N2 O3 | N3 O3 | |
---|---|---|---|---|---|---|
A | 0.677951 | 0.6812565 | 0.735013 | 0.861465 | 0.842696 | 0.83215 |
B | −0.00058 | −0.001061 | 0.000461 | −0.00024 | 0.000275 | −0.00026 |
C | −516.399 | −522.8114 | 566.6811 | −503.494 | 473.485 | −521.718 |
N1 NO2 | N2 NO2 | N3 NO2 | N1 O3 | N2 O3 | N3 O3 | |
---|---|---|---|---|---|---|
Corrected-Ref | 14.8 | 15.5 | 13.3 | 20.0 | 24.0 | 21.8 |
Predicted-Ref | 12.8 | 13.2 | 12.9 | 21.1 | 22.7 | 23.0 |
N1 NO2 | N2 NO2 | N3 NO2 | N1 O3 | N2 O3 | N3 O3 | |
---|---|---|---|---|---|---|
Corrected-Ref | 0.69 | 0.74 | 0.62 | 1.36 | 1.68 | 2.25 |
Predicted-Ref | 0.55 | 0.66 | 0.55 | 2.26 | 2.42 | 2.33 |
N1 NO2 | N2 NO2 | N3 NO2 | N1 O3 | N2 O3 | N3 O3 | |
---|---|---|---|---|---|---|
Corrected-Ref | 0.21 | 0.23 | 0.20 | 0.27 | 0.24 | 0.33 |
Predicted-Ref | 0.19 | 0.22 | 0.19 | 0.46 | 0.45 | 0.46 |
N1 NO2 | N2 NO2 | N3 NO2 | N1 O3 | N2 O3 | N3 O3 | |
---|---|---|---|---|---|---|
Corrected-Ref | 1.58 | 1.60 | 1.60 | 0.11 | 0.07 | 0.15 |
Predicted-Ref | 1.67 | 1.79 | 1.80 | 1.40 | 1.38 | 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christakis, I.; Tsakiridis, O.; Kandris, D.; Stavrakas, I. A Kalman Filter Scheme for the Optimization of Low-Cost Gas Sensor Measurements. Electronics 2024, 13, 25. https://doi.org/10.3390/electronics13010025
Christakis I, Tsakiridis O, Kandris D, Stavrakas I. A Kalman Filter Scheme for the Optimization of Low-Cost Gas Sensor Measurements. Electronics. 2024; 13(1):25. https://doi.org/10.3390/electronics13010025
Chicago/Turabian StyleChristakis, Ioannis, Odysseas Tsakiridis, Dionisis Kandris, and Ilias Stavrakas. 2024. "A Kalman Filter Scheme for the Optimization of Low-Cost Gas Sensor Measurements" Electronics 13, no. 1: 25. https://doi.org/10.3390/electronics13010025
APA StyleChristakis, I., Tsakiridis, O., Kandris, D., & Stavrakas, I. (2024). A Kalman Filter Scheme for the Optimization of Low-Cost Gas Sensor Measurements. Electronics, 13(1), 25. https://doi.org/10.3390/electronics13010025