FPGA-Based Implementation of an Adaptive Noise Controller for Continuous Wave Superconducting Cavity
Abstract
:1. Introduction
2. Controller Loops
The LLRF System Comprises Two Control Loops
- The LLRF controller is responsible for stabilizing the accelerator field. Figure 1 provides an overview of the LLRF control system currently in operation at CMTB.
- The detuning controller loop aims to stabilize the resonance frequency of the cavities.
- This paper primarily focuses on the implementation of the detuning controller. An approach has been proposed to identify microphonics changes and estimate adaptive filter coefficients using the VSS LMS algorithm.
3. Compensation Method for Microphonics Detuning
- Sinewaves that match the frequencies of the corresponding harmonic tones are to be cancelled. A particular sinusoid signal can be eliminated by a finite impulse response (FIR) notch filter in the NANC method while having very little impact on narrowband noise, as shown in Figure 2. The second technique, the adaptive FIR notch filter, was developed to cancel tonal interference [15] and has been adapted for use in the periodic NANC method [16].
Narrowband Active Noise Controller Components
4. Hardware Implementation
SPI Interface
5. Firmware Implementation of the NANC Method
Firmware Implementation Results
6. Experimental Tests
7. Discussion
8. Conclusions
- There is no need to identify the transfer function of the cryomodule and plant.
- Low computational complexity.
- High tracking ability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DESY. Hamburg. FLASH-The Free-Electron Laser in Hamburg. Available online: https://flash.desy.de/ (accessed on 25 October 2023).
- Brinkmann, R. XFEL: The European X-ray Free-Electron Laser-Technical Design Report; DESY: Hamburg, Germany, 2007; Available online: https://bib-pubdb1.desy.de/record/77248/files/european-xfel-tdr.pdf (accessed on 25 October 2023).
- Przygoda, K. Development of a Control System for Fast Frequency Tuners of Superconducting Resonant Cavities for FLASH and XFEL Experiments. Ph.D. Thesis, Politechnikac Łódzka, Łódz, Poland, 2011. [Google Scholar]
- Cichalewski, W.; Sekutowicz, J.; Napieralski, A.; Rybaniec, R.; Branlard, J.; Ayvazyan, V. Continuous Wave Operation of Superconducting Accelerating Cavities with High Loaded Quality Factor. IEEE Trans. Nucl. Sci. 2020, 67, 2119–2127. [Google Scholar] [CrossRef]
- Bellandi, A.; Branlard, J.; Cruz, J.D.; Aderhold, S.; Benwell, A.; Brachmann, A.; Hoobler, S.; Ratti, A.; Gonnella, D.; Nelson, J.; et al. Narrow bandwidth active noise control for microphonics rejection in superconducting cavities at LCLS-II. arXiv 2022, arXiv:2209.13896. [Google Scholar]
- Leewe, R.; Shahriari, Z.; Moallem, M. Resonance frequency control of RF normal conducting cavity using gradient estimator of reflected power. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 869, 172–179. [Google Scholar] [CrossRef]
- Banerjee, N.; Hoffstaetter, G.; Liepe, M.; Quigley, P.; Zhou, Z. Active suppression of microphonics detuning in high QL cavities. Phys. Rev. Accel. Beams 2019, 22, 2–9. [Google Scholar] [CrossRef]
- Kang, H.S. Achievement and prospect of the PAL-XFEL. J. Korean Phys. Soc. 2022, 80, 684–692. [Google Scholar] [CrossRef]
- Farhang-Boroujeny, B. Adaptive Filters: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kuntzsch, M.; Steinbrück, R.; Schurig, R.; Hierholzer, M.; Killenberg, M.; Schmidt, C.; Hoffmann, M.; Iatrou, C.; Rahm, J.; Rutkowski, I. MicroTCA.4-based LLRF for CW Operation at Elbe-Status and Outlook. In Proceedings of the 6th International Beam Instrumentation Conference, Grand Rapids, MI, USA, 20–24 August 2017; pp. 101–103. [Google Scholar]
- Tamura, F.; Sugiyama, Y.; Yoshii, M.; Yamamoto, M.; Okita, H.; Ohmori, C.; Nomura, M.; Shimada, T.; Hasegawa, K.; Hara, K.; et al. Commissioning of the next-generation LLRF control system for the Rapid Cycling Synchrotron of the Japan Proton Accelerator Research Complex. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 999, 165211. [Google Scholar] [CrossRef]
- Li, H.C.; Tsai, H.H.; Lin, T.F.; Chiou, W.S.; Chang, S.H.; Hsiao, F.Z.; Liao, W.R.; Chuang, P.S.D. Redundant Compressor System for the Helium Cryogenic Plant at TPS. IOP Conf. Ser. Mater. Sci. Eng. 2017, 171, 12041. [Google Scholar] [CrossRef]
- Elliott, S.; Darlington, P. Adaptive cancellation of periodic, synchronously sampled interference. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 715–717. [Google Scholar] [CrossRef]
- Chaplin, B. The Cancellation of Repetitive Noise and Vibration. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference, Miami, FL, USA, 8–10 December 1980; pp. 507–958. [Google Scholar]
- Widrow, B.; Glover, J.R.; McCool, J.M.; Kaunitz, J.; Williams, C.S.; Hearn, R.H.; Zeidler, J.R.; Dong, J.E.; Goodlin, R.C. Adaptive noise cancelling: Principles and applications. Proc. IEEE 1975, 63, 1692–1716. [Google Scholar] [CrossRef]
- Ziegler, E., Jr. Selective Active Cancellation System for Repetitive Phenomena. U.S. Patent 4 878 188, 17 September 1992. [Google Scholar]
- Bose, S.D.A.; Chakrabarti, I. Framework for automated earthquake event detection based on denoising by adaptive filter. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3070–3083. [Google Scholar] [CrossRef]
- Li, H.; Tian, H. A New VSS-LMS Adaptive Filtering Algorithm and Its Application in Adaptive Noise Jamming Cancellation System. In Proceedings of the IEEE Circuits and Systems International Conference on Testing and Diagnosis, Chengdu, China, 28–29 April 2009; pp. 1–4. [Google Scholar]
- Data Sheet, Low Noise, Low Drift, Low Power, 3-Axis MEMS Accelerometers, ADXL354/ADXL355. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_355.pdf (accessed on 25 October 2023).
- SIS8300-KU MTCA.4 DIGITIZER, 10 Channel 125 MS/s 16-Bit with Fast Feedback DACs. Available online: https://www.struck.de/sis8300-ku.html (accessed on 25 October 2023).
Module | LUT | FF | DSP | RAM |
---|---|---|---|---|
Available in DAMC-TCK7 | 260,600 | 521,200 | 1680 | 835 |
Complete Project | 6010 | 9889 | 66 | 30 |
NANC Module | 963 | 1899 | 11 | 0 |
SPI-Interface Available in DRTM-VM2 | 296 (81,864) | 436 (521,200) | 2 (58) | 0 (116) |
Cavity 1 | Cavity 2 | Cavity3 | Cavity 4 | Cavity 5 | Cavity 6 | Cavity 7 | Cavity 8 |
---|---|---|---|---|---|---|---|
32 | 49 | 49 | 49 | 34 | 59 | 49 | 17 |
49 | 59 | 52 | 32 | 49 | 34 | 59 | 49 |
17 | 34 | 29 | 10 | 17 | 43 | 17 | 59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdi, F.; Cichalewski, W.; Jałmużna, W.; Butkowski, Ł.; Branlard, J.; Bellandi, A.; Jabłoński, G. FPGA-Based Implementation of an Adaptive Noise Controller for Continuous Wave Superconducting Cavity. Electronics 2024, 13, 155. https://doi.org/10.3390/electronics13010155
Abdi F, Cichalewski W, Jałmużna W, Butkowski Ł, Branlard J, Bellandi A, Jabłoński G. FPGA-Based Implementation of an Adaptive Noise Controller for Continuous Wave Superconducting Cavity. Electronics. 2024; 13(1):155. https://doi.org/10.3390/electronics13010155
Chicago/Turabian StyleAbdi, Fatemeh, Wojciech Cichalewski, Wojciech Jałmużna, Łukasz Butkowski, Julien Branlard, Andrea Bellandi, and Grzegorz Jabłoński. 2024. "FPGA-Based Implementation of an Adaptive Noise Controller for Continuous Wave Superconducting Cavity" Electronics 13, no. 1: 155. https://doi.org/10.3390/electronics13010155
APA StyleAbdi, F., Cichalewski, W., Jałmużna, W., Butkowski, Ł., Branlard, J., Bellandi, A., & Jabłoński, G. (2024). FPGA-Based Implementation of an Adaptive Noise Controller for Continuous Wave Superconducting Cavity. Electronics, 13(1), 155. https://doi.org/10.3390/electronics13010155