Analytical Design of Compact Multiband Bandpass Filters with Multiconductor Transmission Lines and Shunt Open Stubs
Abstract
1. Introduction
2. Circuit Analysis
3. Design Considerations
3.1. Multiconductor Transmission Lines
3.2. Open Stubs
3.3. Design Criteria
- Choose MTL bandwidth positioning its first transmission zero (3) ().
- Position the inner band zeros () with the stubs ().
- Select the MTL and stubs impedances using the design criteria for the first prototype of [10].
- Choose the spur-line section parameters to mitigate the first replica of the structure ().
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, D.; He, K.; Zhang, Y.; Song, M. A Multiband Dual-Polarized Omnidirectional Antenna for Indoor Wireless Communication Systems. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 290–293. [Google Scholar] [CrossRef]
- Enomoto, J.; Nishizawa, H.; Ishikawa, R.; Takayama, Y.; Honjo, K. Parallel combination of high-efficiency amplifiers with spurious rejection for concurrent multiband operation. In Proceedings of the 2016 46th European Microwave Conference (EuMC), London, UK, 4–6 October 2016; pp. 1075–1078. [Google Scholar] [CrossRef]
- Zhang, S.; Qiu, L.; Chu, Q. Multiband Balanced Filters with Controllable Bandwidths Based on Slotline Coupling Feed. IEEE Microw. Wirel. Components Lett. 2017, 27, 974–976. [Google Scholar] [CrossRef]
- Girbau, D.; Lazaro, A.; Perez, A.; Martinez, E.; Pradell, L.; Villarino, R. Tunable dual-band filters based on capacitive-loaded stepped-impedance resonators. In Proceedings of the 2009 European Microwave Conference (EuMC), Paris, France, 1–3 October 2019; pp. 113–116. [Google Scholar] [CrossRef]
- Xu, F.; Liu, X.; Guo, H.; Wang, Y.; Mao, L. A compact dual-mode BPF base on interdigital structure. In Proceedings of the 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 8–11 May 2010; pp. 1595–1597. [Google Scholar] [CrossRef]
- Ketkuntod, P.; Chomtong, P.; Meesomklin, S.; Akkaraekthalin, P. A multiband bandpass filter using interdigital and step-impedance techniques for 4G, WiMAX and WLAN systems. In Proceedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Hua Hin, Thailand, 24–26 June 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Psychogiou, D.; Gómez-García, R.; Peroulis, D. Single and Multiband Acoustic-Wave-Lumped-Element-Resonator (AWLR) Bandpass Filters with Reconfigurable Transfer Function. IEEE Trans. Microw. Theory Tech. 2016, 64, 4394–4404. [Google Scholar] [CrossRef]
- Gómez-García, R.; Muñoz-Ferreras, J.; Psychogiou, D. Split-Type Input-Reflectionless Multiband Filters. IEEE Microw. Wirel. Components Lett. 2018, 28, 981–983. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.J.; Márquez-Segura, E. Analytical Design of Wire-Bonded Multiconductor Transmission-Line-Based Ultra-Wideband Differential Bandpass Filters. IEEE Trans. Microw. Theory Tech. 2014, 62, 2308–2315. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.J.; Pérez-Escribano, M.; Márquez-Segura, E. Synthesis of Dual-Band Bandpass Filters with Short-Circuited Multiconductor Transmission Lines and Shunt Open Stubs. IEEE Access 2019, 7, 24071–24081. [Google Scholar] [CrossRef]
- Cameron, R.J. General coupling matrix synthesis methods for Chebyshev filtering functions. IEEE Trans. Microw. Theory Tech. 1999, 47, 433–442. [Google Scholar] [CrossRef]
- Crnojević-Bengin, V. Advances in Multi-Band Microstrip Filters; EuMA High Frequency Technologies Series; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef][Green Version]
- Sánchez-Martínez, J.J.; Márquez-Segura, E. Analysis of wire-bonded multiconductor transmission line-based phase-shifting sections. J. Electromagn. Waves Appl. 2013, 27, 1997–2009. [Google Scholar] [CrossRef]
- Ou, W. Design Equations for an Interdigitated Directional Coupler. IEEE Trans. Microw. Theory Tech. 1975, 23, 253–255. [Google Scholar] [CrossRef]
- Bates, R.N. Design of microstrip spur-line band-stop filters. IEE J. Microwaves Opt. Acoust. 1977, 1, 209–214. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.J.; Márquez-Segura, E.; Camacho-Peñalosa, C. Analysis of Wire-Bonded Multiconductor Transmission-Line-Based Stubs. IEEE Trans. Microw. Theory Tech. 2013, 61, 1467–1476. [Google Scholar] [CrossRef]
- Kirschning, M.; Jansen, R.H.; Koster, N.H.L. Accurate model for open end effect of microstrip lines. Electron. Lett. 1981, 17, 123–125. [Google Scholar] [CrossRef]
- Marquez-Segura, E.; Casares-Miranda, F.; Otero, P.; Camacho-Penalosa, C.; Page, J. Analytical model of the wire-bonded interdigital capacitor. IEEE Trans. Microw. Theory Tech. 2006, 54, 748–754. [Google Scholar] [CrossRef]
- Zhang, R.; Peroulis, D. Planar Multifrequency Wideband Bandpass Filters with Constant and Frequency Mappings. IEEE Trans. Microw. Theory Tech. 2018, 66, 935–942. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, K.; Wang, Y. Coupling Matrix Design of Compact Multiband Cascaded Trisection Bandpass Filters. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2762–2766. [Google Scholar] [CrossRef]
- Zhao, K.; Psychogiou, D. Single-to-Multi-Band Reconfigurable Acoustic-Wave-Lumped-Resonator Bandpass Filters. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2066–2070. [Google Scholar] [CrossRef]
Parameter | Design Value | Manufactured |
---|---|---|
MTL number of fingers | 6 | 6 |
MTL finger width | 170 µm | 123 µm |
MTL finger separation | 200 µm | 238 µm |
MTL finger length | 9.5 mm | 9.46 mm |
Stub #1 width | 130 µm | 83 µm |
Stub #1 length | 8 mm | 7.97 mm |
Stub #2 width | 130 µm | 83 µm |
Stub #2 length | 12 mm | 11.96 mm |
Spur-line width | 150 µm | 192 µm |
Spur-line gap | 150 µm | 195 µm |
Spur-line length | 3.25 mm | 3.21 mm |
Filter | RL (dB) | IL (dB) | Size () | (GHz) | FBW (%) | Substrate |
---|---|---|---|---|---|---|
[3] | 16.7 | 4.6 | 0.66 × 0.42 | 1.54 | 11 | |
[6] | 17.12 | 2.88 | 0.35 × 0.25 | 1.8 | 5.5 | GML 1000 |
[19] | 8.2 | 1.8 | 1.29 × 1.33 | 0.415 | 55.4 | Rogers RO4003C |
[20] | 17.9 | 2.69 | 0.81 × 0.58 | 3.3 | 3.57 | Rogers RO4003C |
[21] | 20 | 4.25 | 0.46 × 0.22 | 1 | 0.08 | Rogers RO4003C |
Proposed Filter | 16.5 | 1.3 | 0.29 × 0.29 | 2.5 | 40 | Rogers RO4350B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Escribano, M.; Márquez-Segura, E.; Sánchez-Martínez, J.J. Analytical Design of Compact Multiband Bandpass Filters with Multiconductor Transmission Lines and Shunt Open Stubs. Electronics 2023, 12, 1945. https://doi.org/10.3390/electronics12081945
Pérez-Escribano M, Márquez-Segura E, Sánchez-Martínez JJ. Analytical Design of Compact Multiband Bandpass Filters with Multiconductor Transmission Lines and Shunt Open Stubs. Electronics. 2023; 12(8):1945. https://doi.org/10.3390/electronics12081945
Chicago/Turabian StylePérez-Escribano, Mario, Enrique Márquez-Segura, and Juan José Sánchez-Martínez. 2023. "Analytical Design of Compact Multiband Bandpass Filters with Multiconductor Transmission Lines and Shunt Open Stubs" Electronics 12, no. 8: 1945. https://doi.org/10.3390/electronics12081945
APA StylePérez-Escribano, M., Márquez-Segura, E., & Sánchez-Martínez, J. J. (2023). Analytical Design of Compact Multiband Bandpass Filters with Multiconductor Transmission Lines and Shunt Open Stubs. Electronics, 12(8), 1945. https://doi.org/10.3390/electronics12081945