Analytical Design of Compact Multiband Bandpass Filters with Multiconductor Transmission Lines and Shunt Open Stubs
Abstract
:1. Introduction
2. Circuit Analysis
3. Design Considerations
3.1. Multiconductor Transmission Lines
3.2. Open Stubs
3.3. Design Criteria
- Choose MTL bandwidth positioning its first transmission zero (3) ().
- Position the inner band zeros () with the stubs ().
- Select the MTL and stubs impedances using the design criteria for the first prototype of [10].
- Choose the spur-line section parameters to mitigate the first replica of the structure ().
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, D.; He, K.; Zhang, Y.; Song, M. A Multiband Dual-Polarized Omnidirectional Antenna for Indoor Wireless Communication Systems. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 290–293. [Google Scholar] [CrossRef]
- Enomoto, J.; Nishizawa, H.; Ishikawa, R.; Takayama, Y.; Honjo, K. Parallel combination of high-efficiency amplifiers with spurious rejection for concurrent multiband operation. In Proceedings of the 2016 46th European Microwave Conference (EuMC), London, UK, 4–6 October 2016; pp. 1075–1078. [Google Scholar] [CrossRef]
- Zhang, S.; Qiu, L.; Chu, Q. Multiband Balanced Filters with Controllable Bandwidths Based on Slotline Coupling Feed. IEEE Microw. Wirel. Components Lett. 2017, 27, 974–976. [Google Scholar] [CrossRef]
- Girbau, D.; Lazaro, A.; Perez, A.; Martinez, E.; Pradell, L.; Villarino, R. Tunable dual-band filters based on capacitive-loaded stepped-impedance resonators. In Proceedings of the 2009 European Microwave Conference (EuMC), Paris, France, 1–3 October 2019; pp. 113–116. [Google Scholar] [CrossRef]
- Xu, F.; Liu, X.; Guo, H.; Wang, Y.; Mao, L. A compact dual-mode BPF base on interdigital structure. In Proceedings of the 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 8–11 May 2010; pp. 1595–1597. [Google Scholar] [CrossRef]
- Ketkuntod, P.; Chomtong, P.; Meesomklin, S.; Akkaraekthalin, P. A multiband bandpass filter using interdigital and step-impedance techniques for 4G, WiMAX and WLAN systems. In Proceedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Hua Hin, Thailand, 24–26 June 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Psychogiou, D.; Gómez-García, R.; Peroulis, D. Single and Multiband Acoustic-Wave-Lumped-Element-Resonator (AWLR) Bandpass Filters with Reconfigurable Transfer Function. IEEE Trans. Microw. Theory Tech. 2016, 64, 4394–4404. [Google Scholar] [CrossRef]
- Gómez-García, R.; Muñoz-Ferreras, J.; Psychogiou, D. Split-Type Input-Reflectionless Multiband Filters. IEEE Microw. Wirel. Components Lett. 2018, 28, 981–983. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.J.; Márquez-Segura, E. Analytical Design of Wire-Bonded Multiconductor Transmission-Line-Based Ultra-Wideband Differential Bandpass Filters. IEEE Trans. Microw. Theory Tech. 2014, 62, 2308–2315. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.J.; Pérez-Escribano, M.; Márquez-Segura, E. Synthesis of Dual-Band Bandpass Filters with Short-Circuited Multiconductor Transmission Lines and Shunt Open Stubs. IEEE Access 2019, 7, 24071–24081. [Google Scholar] [CrossRef]
- Cameron, R.J. General coupling matrix synthesis methods for Chebyshev filtering functions. IEEE Trans. Microw. Theory Tech. 1999, 47, 433–442. [Google Scholar] [CrossRef]
- Crnojević-Bengin, V. Advances in Multi-Band Microstrip Filters; EuMA High Frequency Technologies Series; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.J.; Márquez-Segura, E. Analysis of wire-bonded multiconductor transmission line-based phase-shifting sections. J. Electromagn. Waves Appl. 2013, 27, 1997–2009. [Google Scholar] [CrossRef]
- Ou, W. Design Equations for an Interdigitated Directional Coupler. IEEE Trans. Microw. Theory Tech. 1975, 23, 253–255. [Google Scholar] [CrossRef]
- Bates, R.N. Design of microstrip spur-line band-stop filters. IEE J. Microwaves Opt. Acoust. 1977, 1, 209–214. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.J.; Márquez-Segura, E.; Camacho-Peñalosa, C. Analysis of Wire-Bonded Multiconductor Transmission-Line-Based Stubs. IEEE Trans. Microw. Theory Tech. 2013, 61, 1467–1476. [Google Scholar] [CrossRef]
- Kirschning, M.; Jansen, R.H.; Koster, N.H.L. Accurate model for open end effect of microstrip lines. Electron. Lett. 1981, 17, 123–125. [Google Scholar] [CrossRef]
- Marquez-Segura, E.; Casares-Miranda, F.; Otero, P.; Camacho-Penalosa, C.; Page, J. Analytical model of the wire-bonded interdigital capacitor. IEEE Trans. Microw. Theory Tech. 2006, 54, 748–754. [Google Scholar] [CrossRef]
- Zhang, R.; Peroulis, D. Planar Multifrequency Wideband Bandpass Filters with Constant and Frequency Mappings. IEEE Trans. Microw. Theory Tech. 2018, 66, 935–942. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, K.; Wang, Y. Coupling Matrix Design of Compact Multiband Cascaded Trisection Bandpass Filters. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2762–2766. [Google Scholar] [CrossRef]
- Zhao, K.; Psychogiou, D. Single-to-Multi-Band Reconfigurable Acoustic-Wave-Lumped-Resonator Bandpass Filters. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2066–2070. [Google Scholar] [CrossRef]
Parameter | Design Value | Manufactured |
---|---|---|
MTL number of fingers | 6 | 6 |
MTL finger width | 170 µm | 123 µm |
MTL finger separation | 200 µm | 238 µm |
MTL finger length | 9.5 mm | 9.46 mm |
Stub #1 width | 130 µm | 83 µm |
Stub #1 length | 8 mm | 7.97 mm |
Stub #2 width | 130 µm | 83 µm |
Stub #2 length | 12 mm | 11.96 mm |
Spur-line width | 150 µm | 192 µm |
Spur-line gap | 150 µm | 195 µm |
Spur-line length | 3.25 mm | 3.21 mm |
Filter | RL (dB) | IL (dB) | Size () | (GHz) | FBW (%) | Substrate |
---|---|---|---|---|---|---|
[3] | 16.7 | 4.6 | 0.66 × 0.42 | 1.54 | 11 | |
[6] | 17.12 | 2.88 | 0.35 × 0.25 | 1.8 | 5.5 | GML 1000 |
[19] | 8.2 | 1.8 | 1.29 × 1.33 | 0.415 | 55.4 | Rogers RO4003C |
[20] | 17.9 | 2.69 | 0.81 × 0.58 | 3.3 | 3.57 | Rogers RO4003C |
[21] | 20 | 4.25 | 0.46 × 0.22 | 1 | 0.08 | Rogers RO4003C |
Proposed Filter | 16.5 | 1.3 | 0.29 × 0.29 | 2.5 | 40 | Rogers RO4350B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Escribano, M.; Márquez-Segura, E.; Sánchez-Martínez, J.J. Analytical Design of Compact Multiband Bandpass Filters with Multiconductor Transmission Lines and Shunt Open Stubs. Electronics 2023, 12, 1945. https://doi.org/10.3390/electronics12081945
Pérez-Escribano M, Márquez-Segura E, Sánchez-Martínez JJ. Analytical Design of Compact Multiband Bandpass Filters with Multiconductor Transmission Lines and Shunt Open Stubs. Electronics. 2023; 12(8):1945. https://doi.org/10.3390/electronics12081945
Chicago/Turabian StylePérez-Escribano, Mario, Enrique Márquez-Segura, and Juan José Sánchez-Martínez. 2023. "Analytical Design of Compact Multiband Bandpass Filters with Multiconductor Transmission Lines and Shunt Open Stubs" Electronics 12, no. 8: 1945. https://doi.org/10.3390/electronics12081945
APA StylePérez-Escribano, M., Márquez-Segura, E., & Sánchez-Martínez, J. J. (2023). Analytical Design of Compact Multiband Bandpass Filters with Multiconductor Transmission Lines and Shunt Open Stubs. Electronics, 12(8), 1945. https://doi.org/10.3390/electronics12081945