A Fast Resource Allocation Algorithm Based on Reinforcement Learning in Edge Computing Networks Considering User Cooperation
Abstract
:1. Introduction
1.1. Research Motivation
1.2. Research Objectives and Problem Statement
1.3. Related Works and Research Gap
1.4. Research Contributions and Paper Structure
2. Materials and Methods
2.1. Preliminary Knowledge
2.1.1. Introduction of the Problem
2.1.2. Introduction of Model Components
- Transmission model
- Delay model
- Energy consumption model
- User cooperation model
2.2. Description of Optimization and Algorithm
2.2.1. Description of Optimization Problem
2.2.2. Algorithm Architecture
Introduction of Qlearning Components
Introduction of Exploration Strategy, Iteration Process and Parameters
Algorithm pseudocode
Algorithm 1 Pseudocode for Qlearning algorithm with user cooperation |
Input: state and action space, network conditions, initialized reward R = 0, training episodes K Output: optimal resource allocation strategy
|
2.2.3. Complexity Analysis of Algorithm
3. Results
3.1. Simulation Parameters and Conditions
3.2. Illustration and Evaluation of Algorithm Performance
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, F.; Xing, H.; Wang, X.; Luo, S.; Dai, P.; Xiao, Z.; Zhao, B. Evolutionary Multi-Objective Reinforcement Learning Based Trajectory Control and Task Offloading in UAV-Assisted Mobile Edge Computing. IEEE Trans. Mob. Comput. 2022, 18, 1–18. [Google Scholar] [CrossRef]
- Li, J. Application Mode of 5G edge computing in Industrial Internet. Ind. Control. Comput. 2022, 35, 141–143. [Google Scholar]
- Wang, S. Research on Machine Learning-Based Resource Management Technology in Mobile Edge Computing Network. Ph.D. Thesis, Beijing University of Posts and Telecommunications, Beijing, China, 10 November 2021. [Google Scholar]
- Yang, D.; Zhu, T.; Wang, S.; Wang, S.; Xiong, Z. LFRSNet: A Robust Light Field Semantic Segmentation Network Combining Contextual and Geometric Features. Front. Environ. Sci. 2022, 10, 1443. [Google Scholar] [CrossRef]
- Ng, W.C.; Lim, W.Y.B.; Xiong, Z.; Niyato, D.; Miao, C.; Han, Z.; Kim, D.I. Stochastic Coded Offloading Scheme for Unmanned Aerial Vehicle-Assisted Edge Computing. IEEE Internet Things J. 2022, 10, 71–91. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Hosseinalipour, S.; Love, D.J.; Pathirana, P.N.; Brinton, C.G. Latency Optimization for Blockchain-Empowered Federated Learning in Multi-Server Edge Computing. IEEE J. Sel. Areas Commun. 2022, 40, 3373–3390. [Google Scholar] [CrossRef]
- Yu, S.; Chen, X.; Zhou, Z.; Gong, X.; Wu, D. When Deep Reinforcement Learning Meets Federated Learning: Intelligent Multi-Timescale Resource Management for Multi-access Edge Computing in 5G Ultra Dense Network. IEEE Internet Things J. 2020, 8, 2238–2251. [Google Scholar] [CrossRef]
- Guo, S.; Hu, X.; Dong, G.; Li, W.; Qiu, X. Mobile edge computing resource allocation: A joint Stackelberg game and matching strategy. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719861556. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Xiao, Z.; Jiang, H.; Alazab, M.; Lui, J.C.; Dustdar, S.; Liu, J. Task Co-Offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2022, 19, 480–490. [Google Scholar] [CrossRef]
- Chen, W.; Yang, Z.; Gu, F.; Zhao, L. A Game Theory Based Resource Allocation Strategy for Mobile edge computing. Comput. Sci. 2023, 50, 32–41. [Google Scholar]
- Li, Y. Research on Energy-Efficient and Efficient Resource Joint Optimization in Mobile Edge Computing. Ph.D. Thesis, Jilin University, Changchun, China, 1 September 2020. [Google Scholar]
- Zhu, S. Resource Optimization Problems in Mobile Edge Computing. Ph.D. Thesis, Southeast China University, Nanjing, China, 12 May 2021. [Google Scholar]
- Jiang, H.; Dai, X.; Xiao, Z.; Iyengar, A.K. Joint Task Offloading and Resource Allocation for Energy-Constrained Mobile Edge Computing. IEEE Trans. Mob. Comput. 2022, 1, 1. [Google Scholar] [CrossRef]
- Du, H.; Deng, Y.; Xue, J.; Meng, D.; Zhao, Q.; Xu, Z. Robust Online CSI Estimation in a Complex Environment. IEEE Trans. Wirel. Commun. 2022, 21, 8322–8336. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, X. Broadband cancellation method in an adaptive co-site interference cancellation system. Int. J. Electron. 2022, 109, 854–874. [Google Scholar] [CrossRef]
- Mohajer, A.; Daliri, M.S.; Mirzaei, A.; Ziaeddini, A.; Nabipour, M.; Bavaghar, M. Heterogeneous computational resource allocation for NOMA: Toward green mobile edge-computing systems. IEEE Trans. Serv. Comput. 2022, 1, 1–14. [Google Scholar] [CrossRef]
- Mazloomi, A.; Sami, H.; Entahar, J.; Otrok, H.; Mourad, A. Reinforcement Learning Framework for Server Placement and Workload Allocation in Multi-Access Edge Computing. IEEE Internet Things J. 2022, 10, 1376–1390. [Google Scholar] [CrossRef]
- Jordan, M.I. Artificial intelligence—The revolution hasn’t happened yet. Harv. Data Sci. Rev. 2019, 1, 1–9. [Google Scholar]
- Malandrino, F.; Chiasserini, C.F.; Di Giacomo, G. Energy-efficient Training of Distributed DNNs in The Mobile-Edge-Cloud Continuum. In Proceedings of the 2022 17th Wireless On-Demand Network Systems and Services Conference (WONS), Oppdal, Norway, 30 March–1 April 2022; pp. 1–4. [Google Scholar]
- Meng, H. Study on Task Migration Strategy in Mobile Edge Computing. Ph.D. Thesis, Beijing University of Technology, Beijing, China, 1 May 2019. [Google Scholar]
- Guo, H. Research on the key technologies of resource allocation and data access for edge computing. Master’s Thesis, National University of Defense Technology, Changsha, China, 1 December 2019. [Google Scholar]
- Hamadi, R.; Khanfor, A.; Ghazzai, H.; Massoud, Y. A Hybrid Artificial Neural Network for Task Offloading in Mobile Edge Computing. In Proceedings of the 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), Fukuoka, Japan, 7–10 August 2022; pp. 1–4. [Google Scholar]
- Zhang, Y.; Hu, J. Agent model-assisted particle swarm optimization algorithm for dynamic optimization problems with high computational cost. J. Shanxi Norm. Univ. Nat. Sci. Ed. 2021, 49, 71–84. [Google Scholar]
- Jin, Y.; Wang, X. Improved Differential Evolution Algorithm for Steelmaking and Continuous Casting Dynamic Scheduling Problem. Comput. Meas. Control 2022, 30, 272–278. [Google Scholar]
- Dong, M.; Lin, B. Dynamic optimization of navigation satellite laser inter-satellite link topology based on multi-objective simulated annealing algorithm. Chin. J. Lasers 2018, 45, 217–228. [Google Scholar]
- Zhu, X.; He, Y. Energy-efficient dynamic task scheduling algorithm for wireless sensor networks. Comput. Eng. Des. 2020, 41, 313–318. [Google Scholar]
Name | Symbol | Value |
---|---|---|
Number of users | M | 3 |
Number of communication resources | N | 3 |
Gears of power allocation | G | 1 |
Bandwidth | W | 10,000 |
Noise of channel | σ2 | 1 |
Uplink power limit | Pul | 1 |
Downlink power limit | Pdl | 15 |
CPU cycles for computing per byte (user device) | ωm | 50 |
Parameters of reward | c1, c2 | 0.1, 10 |
CPU cycles for computing per byte (MEC server) | ωs | 50 |
CPU frequency of user device | Fm | 0.5 GHz |
CPU frequency of MEC server | Fs | 5 GHz |
Weight of delay | γt | 0.6 |
Ratio of task offloading | μ | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Chen, Z. A Fast Resource Allocation Algorithm Based on Reinforcement Learning in Edge Computing Networks Considering User Cooperation. Electronics 2023, 12, 1459. https://doi.org/10.3390/electronics12061459
Jin Y, Chen Z. A Fast Resource Allocation Algorithm Based on Reinforcement Learning in Edge Computing Networks Considering User Cooperation. Electronics. 2023; 12(6):1459. https://doi.org/10.3390/electronics12061459
Chicago/Turabian StyleJin, Yichen, and Ziwei Chen. 2023. "A Fast Resource Allocation Algorithm Based on Reinforcement Learning in Edge Computing Networks Considering User Cooperation" Electronics 12, no. 6: 1459. https://doi.org/10.3390/electronics12061459
APA StyleJin, Y., & Chen, Z. (2023). A Fast Resource Allocation Algorithm Based on Reinforcement Learning in Edge Computing Networks Considering User Cooperation. Electronics, 12(6), 1459. https://doi.org/10.3390/electronics12061459