Extreme Sparse-Array Synthesis via Iterative Convex Optimization and Simulated-Annealing Expanded Array
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trucco, A.; Palmese, M.; Repetto, S. Devising an affordable sonar system for underwater 3-D vision. IEEE Trans. Instrum. Meas. 2008, 57, 2348–2354. [Google Scholar] [CrossRef]
- Karaman, M.; Wygant, I.O.; Oralkan, O.; Khuri-Yakub, B.T. Minimally Redundant 2-D Array Designs for 3-D Medical Ultrasound Imaging. IEEE Trans. Med. Imaging 2009, 28, 1051–1061. [Google Scholar] [CrossRef]
- Yan, C.; Yang, P.; Xing, Z.; Huang, S. Synthesis of Planar Sparse Arrays with Minimum Spacing Constraint. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1095–1098. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, Y.; Liu, X.; Jiang, R.; Shen, B.; Guo, X. Optimized Design for Sparse Arrays in 3-D Imaging Sonar Systems Based on Perturbed Bayesian Compressive Sensing. IEEE Sens. J. 2020, 20, 5554–5565. [Google Scholar] [CrossRef]
- Ha, B.; Mussetta, M.; Pirinoli, P.; Zich, R. Modified Compact Genetic Algorithm for Thinned Array Synthesis. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1105–1108. [Google Scholar] [CrossRef]
- Chen, P.; Zheng, Y.; Zhu, W. Optimized simulated annealing algorithm for thinning and weighting large planar arrays in both far-field and near-field. IEEE J. Ocean. Eng. 2011, 36, 658–664. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, F.; Zhou, H.; Tian, X. Synthesis of extreme sparse array for real-time 3D acoustic imaging. Electron. Lett. 2015, 51, 803–804. [Google Scholar] [CrossRef]
- Hooker, J.W.; Arora, J.K. Optimal thinning levels in linear arrays. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 771–774. [Google Scholar] [CrossRef]
- Oliveri, G.; Bekele, E.T.; Robol, F.; Massa, A. Sparsening conformal arrays through a versatile BCS-based method. IEEE Trans. Antennas Propag. 2014, 62, 1681–1689. [Google Scholar] [CrossRef]
- Oliveri, G.; Massa, A. Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays. IEEE Trans. Antennas Propag. 2011, 59, 467–481. [Google Scholar] [CrossRef]
- Yan, F.; Yang, P.; Yang, F.; Dong, T. Synthesis of planar sparse arrays by perturbed compressive sampling framework. IET Micro. Antennas Propag. 2016, 10, 1146–1153. [Google Scholar] [CrossRef]
- Yan, F.; Yang, P.; Yang, F.; Zhou, L.; Gao, M. Synthesis of pattern reconfigurable sparse arrays with multiple measurement vectors FOCUSS method. IEEE Trans. Antennas Propag. 2017, 65, 602–611. [Google Scholar] [CrossRef]
- D’Urso, M.; Prisco, G.; Tumolo, R.M. Maximally sparse, steerable, and nonsuperdirective array antennas via convex optimizations. IEEE Trans. Antennas Propag. 2016, 64, 3840–3849. [Google Scholar] [CrossRef]
- Pinchera, D.; Migliore, M.D.; Schettino, F.; Panariello, G. Synthesis of Large Sparse Arrays Using IDEA (Inflating-Deflating Exploration Algorithm). IEEE Trans. Antennas Propag. 2018, 66, 4658–4668. [Google Scholar] [CrossRef]
- Hong, T.; Shi, X.; Liang, X. Synthesis of Sparse Linear Array for Directional Modulation via Convex Optimization. IEEE Trans. Antennas Propag. 2018, 66, 3959–3972. [Google Scholar] [CrossRef]
- Gu, B.; Chen, Y.; Jiang, R.; Liu, X. Optimization of Sparse Cross Array Synthesis via Perturbed Convex Optimization. Sensors 2020, 20, 4929. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Chen, Y.; Liu, X.; Zhou, F.; Jiang, R. A Distributed Convex Optimization Compressed Sensing Method for Sparse Planar Array Synthesis in 3-D Imaging Sonar Systems. IEEE J. Ocean. Eng. 2020, 45, 1022–1033. [Google Scholar] [CrossRef]
- Murino, V.; Trucco, A. Three-dimensional image generation and processing in underwater acoustic vision. Proc. IEEE 2000, 88, 1903–1948. [Google Scholar] [CrossRef]
- CVX: MATLAB Software for Disciplined Convex Programming. Available online: http://cvxr.com/cvx/ (accessed on 20 December 2022).
- Wang, F.; Tian, X.; Liu, X.; Gu, B.; Zhou, F.; Chen, Y. Combination Complex-Valued Bayesian Compressive Sensing Method for Sparsity Constrained Deconvolution Beamforming. IEEE Trans. Instrum. Meas. 2022, 71, 9506013. [Google Scholar] [CrossRef]
Method | Number of Elements | SLP (dB) | Resolution (°) |
---|---|---|---|
[7] | 58 | −22 | 1.28 |
[16] | 45 | −23.67 | 1.22 |
Proposed method | 43 | −23.80 | 1.22 |
Position (λ) | Weight | Position (λ) | Weight | Position (λ) | Weight |
---|---|---|---|---|---|
0 | 0.0218 | 18.3197 | 0.0259 | 32.8365 | 0.0241 |
3.9013 | 0.0216 | 19.2132 | 0.0278 | 33.8144 | 0.0203 |
4.7085 | 0.0247 | 20.2201 | 0.0280 | 34.8189 | 0.0191 |
6.7014 | 0.0152 | 21.2256 | 0.0251 | 35.7119 | 0.0213 |
7.6218 | 0.0184 | 22.1111 | 0.0285 | 36.7129 | 0.0175 |
8.6156 | 0.0231 | 23.1059 | 0.0257 | 37.7382 | 0.0142 |
9.5462 | 0.0181 | 24.1048 | 0.0290 | 38.6273 | 0.0220 |
10.5215 | 0.0178 | 25.1059 | 0.0320 | 40.6161 | 0.0226 |
11.4992 | 0.0195 | 26.0212 | 0.0261 | 41.5016 | 0.0199 |
12.4452 | 0.0203 | 27.0154 | 0.0277 | 42.4244 | 0.0230 |
13.4490 | 0.0206 | 27.9943 | 0.0306 | 43.4312 | 0.0216 |
14.4119 | 0.0267 | 28.9131 | 0.0262 | 44.3340 | 0.0243 |
15.3956 | 0.0255 | 29.9401 | 0.0301 | 50 | 0.0128 |
16.3129 | 0.0199 | 30.8915 | 0.0280 | - | - |
17.3104 | 0.0272 | 31.8464 | 0.0263 | - | - |
Array Configuration | Number of Elements | |
---|---|---|
Proposed Method | Method in [14] | |
50λ, SLP ≤ −20 dB, |uml| ≤ 0.01982 | 39 | 42 |
162λ, SLP ≤ −37 dB, |uml| ≤ 0.01 | 144 | 149 |
Position (λ) | Weight | Position (λ) | Weight | Position (λ) | Weight |
---|---|---|---|---|---|
0 | 0.0239 | 19.1971 | 0.0217 | 33.6252 | 0.0293 |
6.6953 | 0.0259 | 20.1119 | 0.0266 | 34.6094 | 0.0282 |
7.6274 | 0.0347 | 21.1058 | 0.0296 | 35.5084 | 0.0211 |
8.5922 | 0.0239 | 22.1034 | 0.0301 | 36.5089 | 0.0209 |
9.4932 | 0.0357 | 23.0033 | 0.0294 | 37.5194 | 0.0177 |
10.5118 | 0.0268 | 23.9946 | 0.0402 | 38.4983 | 0.0227 |
11.4087 | 0.0147 | 24.8996 | 0.0344 | 39.4030 | 0.0232 |
12.4058 | 0.0107 | 26.9099 | 0.0260 | 40.3132 | 0.0194 |
14.3688 | 0.0329 | 27.8997 | 0.0416 | 41.3192 | 0.0288 |
15.3156 | 0.0253 | 28.8034 | 0.0188 | 42.2122 | 0.0169 |
16.3037 | 0.0123 | 29.8068 | 0.0299 | 44.2037 | 0.0229 |
17.2972 | 0.0221 | 30.7049 | 0.0256 | 46.1132 | 0.0318 |
18.2135 | 0.0287 | 32.7045 | 0.0291 | 50 | 0.0161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, B.; Jiang, R.; Liu, X.; Chen, Y. Extreme Sparse-Array Synthesis via Iterative Convex Optimization and Simulated-Annealing Expanded Array. Electronics 2023, 12, 1401. https://doi.org/10.3390/electronics12061401
Gu B, Jiang R, Liu X, Chen Y. Extreme Sparse-Array Synthesis via Iterative Convex Optimization and Simulated-Annealing Expanded Array. Electronics. 2023; 12(6):1401. https://doi.org/10.3390/electronics12061401
Chicago/Turabian StyleGu, Boxuan, Rongxin Jiang, Xuesong Liu, and Yaowu Chen. 2023. "Extreme Sparse-Array Synthesis via Iterative Convex Optimization and Simulated-Annealing Expanded Array" Electronics 12, no. 6: 1401. https://doi.org/10.3390/electronics12061401
APA StyleGu, B., Jiang, R., Liu, X., & Chen, Y. (2023). Extreme Sparse-Array Synthesis via Iterative Convex Optimization and Simulated-Annealing Expanded Array. Electronics, 12(6), 1401. https://doi.org/10.3390/electronics12061401