Filtering and Detection of Ultra-Wideband Chaotic Radio Pulses with a Matched Frequency-Selective Circuit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filtering Models
2.2. Block Diagram
2.3. Model of the Chaotic Source and the Modulation Scheme
2.4. The Channel Model
2.5. Model of Filtering
2.6. Signal Representation in the Simulation Model
2.7. Model of Detection and Reception of Chaotic Radio Pulses
2.8. Method to Evaluate the Filtering Efficiency
- No filtering, i.e., ;
- A filter matched to the signal band: , when filter G passes of the useful signal energy;
- A filter based on the FSC of the chaos source: .
- –
- A fragment of the noise signal was formed;
- –
- A fragment of the modulation signal was formed from a random sequence of bit: , , with equal probability of zeros and ones; here, is the number of symbols;
- –
- –
- For each symbol, a set of pulse energy estimates 4 was formed , , , among which the maximum value and the pulse position number for this value were determined, which was converted into the symbol number ;
- –
- By comparing the calculated sets of transmitted and received symbols, the number of symbol reception errors was determined, as well as by bitwise comparison of the original sequence with the received sequence , so that the pairs of values , , and were formed.
3. Results
3.1. Bit Error Ratio for a Narrowband Signal
3.2. Bit Error Ratio for UWB Chaotic Radio Pulses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AWGN | Additive white Gaussian noise |
BPF | Band-pass filter |
DCC | Direct chaotic communication |
FSC | Frequency-selective circuit |
NB | Narrowband |
PM | Pulse modulation |
SNR | Signal-to-noise ratio |
UWB | Ultra-Wideband |
References
- Liuqing, Y.; Giannakis, G.B. Ultra-wideband communications: An idea whose time has come. IEEE Signal Process. Mag. 2004, 6, 26–54. [Google Scholar] [CrossRef]
- Niemelä, V.; Haapola, J.; Hämäläinen, M.; Iinatti, J. An Ultra Wideband Survey: Global Regulations and Impulse Radio Research Based on Standards. IEEE Commun. Surv. Tutorials 2017, 2, 874–890. [Google Scholar] [CrossRef] [Green Version]
- Breed, G. A summary of FCC rules for ultra wideband communications. High Freq. Electron. 2005, 1, 42–44. [Google Scholar]
- Mandke, K.; Nam, H.; Yerramneni, L.; Zuniga, C.; Rappaport, T. The Evolution of Ultra Wide Band Radio for Wireless Personal Area Network. High Freq. Electron. 2003, 5, 22–32. [Google Scholar]
- IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). Available online: http://www.ieee802.org/15/pub/TG3a.html (accessed on 24 January 2023).
- IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011); IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs). IEEE Press: New York, NY, USA, 2016; pp. 1–709.
- IEEE Std 802.15.6-2012; IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks. IEEE Press: New York, NY, USA, 2012; pp. 1–271.
- IEEE Std 802.15.4z-2020 (Amendment to IEEE Std 802.15.4-2020); IEEE Standard for Low-Rate Wireless Networks–Amendment 1: Enhanced Ultra Wideband (UWB) Physical Layers (PHYs) and Associated Ranging Techniques. IEEE Press: New York, NY, USA, 2020; pp. 1–174.
- Stocker, M.; Brunner, H.; Schuh, M.; Boano, C.A.; Römer, K. On the Performance of IEEE 802.15.4z-Compliant Ultra-Wideband Devices. In Proceedings of the 2022 Workshop on Benchmarking Cyber-Physical Systems and Internet of Things (CPS-IoTBench), Milan, Italy, 3–6 May 2022; pp. 28–33. [Google Scholar]
- Chen, H.; Chen, Z.; Ou, R.; Chen, R.; Wu, Z.; Li, B. A 4-to-9GHz IEEE 802.15.4z-Compliant UWB Digital Transmitter with Reconfigurable Pulse-Shaping in 28nm CMOS. In Proceedings of the 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Denver, CO, USA, 19–21 June 2022; pp. 99–102. [Google Scholar]
- Apple U1 TMKA75 Ultra Wideband (UWB) Chip Analysis. Available online: https://www.techinsights.com/blog/apple-u1-tmka75-ultra-wideband-uwb-chip-analysis (accessed on 24 January 2023).
- What Is Ultra-Wideband, and How Does It Work? Available online: https://www.smartprix.com/bytes/phones-with-uwb-ultrawideband-connectivity/ (accessed on 24 January 2023).
- Liu, T.; Li, B.; Yang, L. Phase Center Offset Calibration and Multipoint Time Latency Determination for UWB Location. IEEE Internet Things J. 2022, 18, 17536–17550. [Google Scholar] [CrossRef]
- Savić, T.; Vilajosana, X.; Watteyne, T. Constrained Localization: A Survey. IEEE Access 2022, 10, 49297–49321. [Google Scholar] [CrossRef]
- Chaotic Signals in Digital Communications, 1st ed.; Eisencraft, M.; Attux, R.; Suyama, R. (Eds.) CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Kaddoum, G. Wireless Chaos-Based Communication Systems: A Comprehensive Survey. IEEE Access 2016, 4, 2621–2648. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Kyarginsky, B.Y.; Panas, A.I.; Starkov, S.O. Experiments on ultra wideband direct chaotic information transmission in microwave band. Int. J. Bifurc. Chaos 2003, 6, 1495–1507. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Zakharchenko, K.V.; Puzikov, D.Y. Introduction to the Theory of Direct Chaotic Data Transmission. J. Commun. Technol. Electron. 2003, 3, 293. [Google Scholar]
- Andreyev, Y.V.; Dmitriev, A.S.; Efremova, E.V.; Khilinsky, A.D.; Kuzmin, L.V. Qualitative theory of dynamical systems, chaos and contemporary communications. Int. J. Bifurc. Chaos 2005, 11, 3639–3651. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Gerasimov, M.Y.; Itzkov, V.V.; Lazarev, V.A.; Popov, M.G.; Ryzhov, A.I. Active wireless ultrawideband networks based on chaotic radio pulses. J. Commun. Technol. Electron. 2017, 4, 380–388. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Kuzmin, L.V.; Lazarev, V.A.; Ryshov, A.I.; Andreyev, Y.V.; Popov, M.G. Self-organizing ultrawideband wireless sensor network. In Proceedings of the Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO), Kazan, Russia, 3–4 July 2017; pp. 1–6. [Google Scholar]
- Messaadi, M.; Tegui, g.D.; Sadoudi, S.; Ouslimani, A.; Mesloub, A. GoF Based Chaotic On-Off Keying: A New Non-Coherent Modulation for Direct Chaotic Communication. J. Commun. Technol. Electron. 2021, 66 (Suppl. 2), S194–S200. [Google Scholar] [CrossRef]
- Molisch, A.F. Ultra-Wide-Band Propagation Channels. Proc. IEEE 2009, 2, 353–371. [Google Scholar] [CrossRef]
- Cuomo, K.M.; Oppenheim, A.V.; Strogatz, S.H. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process 1993, 10, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Cruz, C.; Numeijer, H. Synchronization through filtering. Int. J. Bifurc. Chaos 2000, 10, 763–775. [Google Scholar] [CrossRef]
- Leung, H.; Zhu, Z. Performance evaluation of EKF-based chaotic synchronization. IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 2001, 9, 1118–1125. [Google Scholar] [CrossRef]
- Kurian, A.P.; Puthusserypady, S. Unscented Kalman Filter and Particle Filter for Chaotic Synchronization. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 4–7 December 2006; pp. 1830–1834. [Google Scholar]
- Kurian, A.P.; Puthusserypady, S. Chaotic synchronization: A nonlinear predictive filtering approach. Chaos 2006, l, 403–408. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, F.; Lo, J.T. A neural filter-based scheme for synchronizing chaotic systems. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 4666–4670. [Google Scholar]
- Butusov, D.; Karimov, T.; Voznesenskiy, A.; Kaplun, D.; Andreev, V.; Ostrovskii, V. Filtering Techniques for Chaotic Signal Processing. Electronics 2018, 7, 450. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, A.S.; Kassian, G.A.; Kuzmin, L.V. Matched filtration of chaotic signals. In Proceedings of the 11th Int. Workshop Nonlinear Dynamics of Electronic Systems (NDES-2003), Scuol, Switzerland, 18–22 May 2003; pp. 73–76. [Google Scholar]
- Zheng, Y.J.; Ng, J.H.; Yang, L. A Low-Complexity Blind Rake Combining Equalizer for UWB Communication Systems. In Proceedings of the 2006 IEEE International Conference on Ultra-Wideband, Waltham, MA, USA, 24–27 September 2006; pp. 629–633. [Google Scholar]
- Ren, J.; Lim, M.S. A Novel Equalizer Structure for Direct Sequence Ultra Wideband (DS-UWB) System. In Proceedings of the 2007 IEEE International Conference on Portable Information Devices, Orlando, FL, USA, 25–29 May 2007; pp. 1–5. [Google Scholar]
- Quan, W.; Dinh, A. An N-Selective MRC Rake Receiver with LMS Adaptive Equalizer for UWB Systems. In Proceedings of the 2006 Canadian Conference on Electrical and Computer Engineering, Ottawa, ON, Canada, 7–10 May 2006; pp. 1783–1786. [Google Scholar]
- Surajudeen-Bakinde, N.; Zhu, X.; Gao, J.; Nandi, A.K.; Lin, H. Genetic Algorithm Based Equalizer for Ultra-Wideband Wireless Communication Systems. IEICE Trans. Commun. 2010, 10, 2725–2734. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Das, S. RAKE-MMSE Time Domain Equalizer for High Data Rate UWB Communication System. In Proceedings of the 2009 Annual IEEE India Conference, Ahmedabad, India, 19–22 December 2009; pp. 1–4. [Google Scholar]
- Li, J.; Quan, J.; Zhang, S.; Lin, X. Equalization Analysis for OOK IR-UWB Using Energy Detector Receiver. In Proceedings of the 2011 Third International Conference on Communications and Mobile Computing, Qingdao, China, 18–20 June 2011; pp. 453–456. [Google Scholar]
- Noureddine, B.B.; SidAhmed, E.; Iyad, D. Channel shortening equalizer based on SVD decomposition in UWB systems. In Proceedings of the 2015 4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 13–15 December 2015; pp. 1–6. [Google Scholar]
- Ma, H.; Wang, X.; Lu, Y.; Tian, L. UWB channel blind estimation method based on channel shortening. In Proceedings of the 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), Singapore, 23–26 July 2017; pp. 308–311. [Google Scholar]
- Benotmane, N.B.; Elahmar, S.A.; Dayoub, I.; Hamouda, W. Improved Eigenfilter Design Method for Channel Shortening Equalizer in TH-UWB. IEEE Trans. Veh. Technol. 2018, 8, 7749–7753. [Google Scholar] [CrossRef]
- Kuzmin, L.V. Establishment of a Chaotic Synchronous Response in the Presence of a Phase Filter in a Communication Channel. Tech. Phys. Lett. 2018, 2, 170–173. [Google Scholar] [CrossRef]
- Andreev, Y.V.; Dmitriev, A.S.; Kletsov, A.V. Amplification of chaotic pulses in a multipath environment. J. Commun. Technol. Electron. 2007, 7, 779–787. [Google Scholar] [CrossRef]
- Altaf, A.; Xi, C.; Miao, J. Design, Optimization and Realization of Two Compact C-band Microstrip BPF Structures. In Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 979–984. [Google Scholar]
- Weng, M.-H.; Zheng, F.-Z.; Lai, H.-Z.; Liu, S.-K. Compact Ultra-Wideband Bandpass Filters Achieved by Using a Stub-Loaded Stepped Impedance Resonator. Electronics 2020, 9, 209. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Hu, Y.; Gao, Y.; Zhang, X.; Zhang, X.; Wang, Z.; Zhou, B.; Cai, Z.; Guo, Y. A Compact UWB Bandpass Chip Filter on a GaAs Substrate with Modified Chebyshev Structure. Electronics 2020, 9, 313. [Google Scholar] [CrossRef] [Green Version]
- Proakis, J.G.; Masoud, S. Digital communications, 5th ed.; McGraw-Hill: New York, NY, USA, 2008; pp. 160–242. [Google Scholar]
- Witrisal, K.; Leus, G.; Janssen, G.J.M.; Pausini, M.; Troesch, F.; Zasowski, T.; Romme, J. Noncoherent ultra-wideband systems. IEEE Signal Process. Mag. 2009, 48–66. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Efremova, E.V.; Kuz’min, L.V. Chaotic pulse trains generated by a dynamical system driven by a periodic signal. Tech. Phys. Lett. 2005, 11, 961–963. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Efremova, E.V.; Kuz’min, L.V.; Atanov, N.V. A train of chaotic pulses generated by a dynamic system driven by an external (periodic) force. J. Commun. Technol. Electron. 2006, 5, 557–567. [Google Scholar] [CrossRef]
- Dmitriev, A.; Efremova, E.; Kuzmin, L.; Atanov, N. Forming pulses in non-autonomous chaotic oscillator. Int. J. Bifurc. Chaos 2007, 10, 3443–3448. [Google Scholar] [CrossRef]
- Kennedy, M.P. Chaos in the Colpitts Oscillator. IEEE Trans. Circuits Syst. I 1994, 41, 771–774. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Efremova, E.V.; Maksimov, N.A.; Grigor’ev, E.V. Generator of microwave chaotic oscillations based on a self-oscillating system with 2.5 degrees of freedom. J. Commun. Technol. Electron. 2007, 10, 1137–1145. [Google Scholar] [CrossRef]
- Dmitriev, A.S.; Efremova, E.V.; Rumyantsev, N.V. A microwave chaos generator with a flat envelope of the power spectrum in the range of 3-8 GHz. Tech. Phys. Lett. 2014, 1, 48–51. [Google Scholar] [CrossRef]
- Efremova, E.V.; Dmitriev, A.S. Ultrawideband microwave 3–7 GHz chaotic oscillator implemented as SiGe integrated circuit. Springer Proc. Phys. 2017, 191, 71–80. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuzmin, L.V.; Efremova, E.V. Filtering and Detection of Ultra-Wideband Chaotic Radio Pulses with a Matched Frequency-Selective Circuit. Electronics 2023, 12, 1324. https://doi.org/10.3390/electronics12061324
Kuzmin LV, Efremova EV. Filtering and Detection of Ultra-Wideband Chaotic Radio Pulses with a Matched Frequency-Selective Circuit. Electronics. 2023; 12(6):1324. https://doi.org/10.3390/electronics12061324
Chicago/Turabian StyleKuzmin, Lev V., and Elena V. Efremova. 2023. "Filtering and Detection of Ultra-Wideband Chaotic Radio Pulses with a Matched Frequency-Selective Circuit" Electronics 12, no. 6: 1324. https://doi.org/10.3390/electronics12061324
APA StyleKuzmin, L. V., & Efremova, E. V. (2023). Filtering and Detection of Ultra-Wideband Chaotic Radio Pulses with a Matched Frequency-Selective Circuit. Electronics, 12(6), 1324. https://doi.org/10.3390/electronics12061324