A Wavelength-Dependent Visible Light Communication Channel Model for Underground Environments and Its Performance Using a Color-Shift Keying Modulation Scheme
Abstract
:1. Introduction
- A novel wavelength-dependent SISO UM-VLC channel model is proposed, taking into account LED/PD relative tilt and rotation, irregular walls, shadowing, light scattering, absorption, and their respective spectral characteristics. The LED is modeled as a Lambertian light source and the ray tracing method is used.
- A novel wavelength-dependent CSK-based UM-VLC channel model is proposed on the basis of the proposed wavelength-dependent SISO UM-VLC channel model.
- The performance of the proposed CSK-based UM-VLC channel model is evaluated in a simulated environment, obtaining parameters such as the average received optical power, SIR, SNR, CIR, RMS delay, and BER. The proposed model is then compared to a reference state-of-the-art UM-VLC channel model.
Related Work
2. Materials and Methods
2.1. General VLC Link
2.2. CSK Modulation
2.3. Reference UM-VLC Channel Model
2.3.1. Geometry
2.3.2. Reference LOS Link
2.3.3. Reference NLOS Link
2.3.4. Reference Scattering Model
2.3.5. Reference Source of Reflections
2.3.6. Reference Shadowing Model
2.3.7. Reference Channel Impulse Response
2.4. Proposed UM-VLC Channel Model
2.4.1. Proposed LOS Link
2.4.2. Proposed NLOS Link
2.4.3. Proposed Scattering and Absorption Model
2.5. Proposed CSK-Based UM-VLC Channel Model
3. Results and Discussion
3.1. Simulation Parameters
Parameters | Values | References |
---|---|---|
Scenario | ||
Tunnel dimensions, | [7] | |
TX position, | m | [7] |
RX z-axis coordinate, | m | [7] |
Spatial resolution, | - | |
Area of grid element in reflection calculation, | 1/9 | [7] |
Reflective surface area of reflector element, | 1 | [7] |
Number of reflectors per wall, | 270 | [7] |
wth reflector rotation angles, | , wall at | [7] |
, wall at | ||
wth reflector tilt angle | [7] | |
LED parameters | ||
Average total transmitted optical power, | 10 W | [7] |
Average transmitted power by ith LED, | 10/3 W | [11] |
LED rotation angle, | - | |
LED tilt angle, | - | |
Semi-angle at half power, | [7] | |
LED impulse response, | [7,43] | |
LED rise time, | 0.5 ns | [7] |
LED fall time, | 1 ns | [7] |
PD parameters | ||
PD surface area, | 1 cm | [7] |
PD rotation angle, | - | |
PD tilt angle, | - | |
Half angle FoV, | [7] | |
Optical concentrator refractive index, | 1.5 | [7] |
Noise parameters | ||
Type of noise | AWGN | [25] |
Electronic charge constant, q | C | [7] |
Bandwidth of electrical filter after PD, B | 100 MHz | [44] |
Background radiation photocurrent, | 10 nA | [45] |
Boltzmann’s constant, | J/K | [7] |
Absolute temperature, | 295 K | [29] |
Open-loop voltage gain, | 10 | [29] |
Fixed capacitance of PD per unit area, | F/ | [29] |
FET channel noise factor, | 1.5 | [29] |
FET transcoductance, | 0.03 S | [29] |
Shadowing parameters | ||
Poisson process intensity parameter, | 10 per min | [46] |
Poisson process time period, | 5 min | [46] |
Obstacle’s width and height joint PDF, | [7,46] | |
Obstacle’s x-y position joint PDF, | [7,46] | |
Dust parameters | ||
Type of dust | Coal dust | [5] |
Dust density, | 1450 mg/ | [30] |
Irregularity coefficient, | [5,30] | |
Mass distribution function, | [30,34] | |
Characteristic size, | 2 m | [34] |
Spread index, | 0.005 | [34] |
Minimum particle diameter, | 1 m | [34] |
Maximum particle diameter, | 40 m | [34] |
Mass per unit volume of dust, | 5000 mg/ | [34] |
3.2. Average Received Optical Power
3.3. Signal-to-Interference Ratio
3.4. Signal-to-Noise Ratio
3.5. Channel Impulse Response
3.6. RMS Delay
3.7. Bit Error Ratio
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AWGN | Additive white Gaussian noise |
BGD | Bimodal Gaussian distribution |
CIE | International Commission on Illumination |
CIR | Channel impulse response |
CSK | Color-shift keying |
DC | Direct current |
ECDF | Empirical cumulative distribution function |
EMI | Electromagnetic interference |
FoV | Field of view |
GBDM | Geometric-based deterministic model |
IEEE | Institute of Electrical and Electronics Engineers |
LOS | Line of sight |
NATM | New Austrian tunneling method |
NLOS | Non-line of sight |
OOC | Optical camera communications |
OOK | On–off keying |
PAM | Pulse amplitude modulation |
PD | Photodetector |
Probability density function | |
R-R | Rosin–Rammler |
RGB | Red, green, blue |
RMS | Root mean square |
RX | Receiver |
SIR | Signal-to-interference ratio |
SISO | Single input single output |
SNR | Signal-to-noise ratio |
SPD | Spectral power distribution |
TX | Transmitter |
UM | Underground mining |
UM-VLC | Underground mining visible light communications |
UWOC | Underwater wireless optical communications |
UWOOC | Underwater optical camera communications |
VLC | Visible light communications |
VLS | Virtual light source |
References
- Tato Diogo, M. European legal framework related to underground mining and tunnelling concerning commission directive (EU) 2017/164, 31 January establishing a fourth list of indicative occupational exposure limit values. Int. J. Min. Sci. Technol. 2020, 30, 541–545. [Google Scholar] [CrossRef]
- Ranjan, A.; Zhao, Y.; Sahu, H.B.; Misra, P. Opportunities and Challenges in Health Sensing for Extreme Industrial Environment: Perspectives From Underground Mines. IEEE Access 2019, 7, 139181–139195. [Google Scholar] [CrossRef]
- Yarkan, S.; Guzelgoz, S.; Arslan, H.; Murphy, R.R. Underground Mine Communications: A Survey. IEEE Commun. Surv. Tutor. 2009, 11, 125–142. [Google Scholar] [CrossRef]
- Ranjan, A.; Sahu, H.B.; Misra, P. Wireless sensor networks: An emerging solution for underground mines. Int. J. Appl. Evol. Comput. 2016, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Javaid, F.; Wang, A.; Sana, M.U.; Husain, A.; Ashraf, I. Characteristic study of visible light communication and influence of coal dust particles in underground coal mines. Electronics 2021, 10, 883. [Google Scholar] [CrossRef]
- Wang, J.; Al-Kinani, A.; Zhang, W.; Wang, C.X. A new VLC channel model for underground mining environments. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 2134–2139. [Google Scholar] [CrossRef]
- Palacios Játiva, P.; Azurdia-Meza, C.A.; Sánchez, I.; Seguel, F.; Zabala-Blanco, D.; Dehghan Firoozabadi, A.; Gutiérrez, C.A.; Soto, I. A VLC channel model for underground mining environments with scattering and shadowing. IEEE Access 2020, 8, 185445–185464. [Google Scholar] [CrossRef]
- Játiva, P.P.; Azurdia-Meza, C.A.; Zabala-Blanco, D.; Gutiérrez, C.A.; Sánchez, I.; Castillo-Soria, F.R.; Seguel, F. Bit error probability of VLC systems in underground mining channels with imperfect CSI. AEU-Int. J. Electron. Commun. 2022, 145, 154101. [Google Scholar] [CrossRef]
- Miramirkhani, F.; Uysal, M. Channel modelling for indoor visible light communications. Philos. Trans. R. Soc. A 2020, 378, 20190187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, E.; Hranilovic, S. Design and Implementation of Color-Shift Keying for Visible Light Communications. J. Light. Technol. 2014, 32, 2053–2060. [Google Scholar] [CrossRef] [Green Version]
- IEEE Std 802.15.7-2018 (Revision of IEEE Std 802.15.7-2011); IEEE Standard for Local and Metropolitan Area Networks—Part 15.7: Short-Range Optical Wireless Communications. IEEE: Piscataway, NJ, USA, 2019; pp. 1–407. [CrossRef]
- Dong, K.; Ke, X.; Li, H. Camera-Based Channel Modeling and Symbol Error Rate Analysis of CSK Modulation for Outdoor OCC Systems. IEEE Access 2022, 10, 50254–50264. [Google Scholar] [CrossRef]
- Shigenawa, A.; Onodera, Y.; Takeshita, E.; Hisano, D.; Maruta, K.; Nakayama, Y. Predictive Equalization for Underwater Optical Camera Communication. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Fon, R.; Igboamalu, F.; Ndjiongue, A.; Ouahada, K.; Leke, C.; Abu-Mahfouz, A. Outage Probability of an Underwater Wireless System Based on the CSK Transmission. In Proceedings of the 2022 International Symposium on Networks, Computers and Communications (ISNCC), Shenzhen, China, 19–22 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, S. Visible light communication channel models and simulation of coal workface energy coupling. Math. Probl. Eng. 2015, 2015, 271352. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Al-Kinani, A.; Zhang, W.; Wang, C.X.; Zhou, L. A general channel model for visible light communications in underground mines. China Commun. 2018, 15, 95–105. [Google Scholar] [CrossRef]
- Morales Céspedes, M.; García Armada, A. Characterization of the Visible Light Communications during the Construction of Tunnels. In Proceedings of the 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, 27–30 August 2019; pp. 356–360. [Google Scholar] [CrossRef]
- Palacios Játiva, P.; Azurdia-Meza, C.A.; Sánchez, I.; Zabala-Blanco, D.; Dehghan Firoozabadi, A.; Soto, I.; Seguel, F. An Enhanced VLC Channel Model for Underground Mining Environments Considering a 3D Dust Particle Distribution Model. Sensors 2022, 22, 2483. [Google Scholar] [CrossRef] [PubMed]
- Játiva, P.P.; Azurdia-Meza, C.A.; Cañizares, M.R.; Sánchez, I.; Seguel, F.; Zabala-Blanco, D.; Carrera, D.F. Performance analysis of IEEE 802.15. 7-based visible light communication systems in underground mine environments. Photonic Netw. Commun. 2022, 43, 23–33. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, C.; Xu, Z.; Zhan, Y. Link Gain and Pulse Width Broadening Evaluation of Non-Line-of-Sight Optical Wireless Scattering Communication Over Broad Spectra. IEEE Photonics J. 2017, 9, 7900212. [Google Scholar] [CrossRef]
- Lee, K.; Park, H.; Barry, J.R. Indoor Channel Characteristics for Visible Light Communications. IEEE Commun. Lett. 2011, 15, 217–219. [Google Scholar] [CrossRef]
- Rodríguez, S.P.; Jiménez, R.P.; Mendoza, B.R.; Hernández, F.J.L.; Alfonso, A.J.A. Simulation of impulse response for indoor visible light communications using 3D CAD models. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zou, D.; Wang, P.; Xu, Z.; Yang, L. Wavelength dependent channel characterization for underwater optical wireless communications. In Proceedings of the 2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Guilin, China, 5–8 August 2014; pp. 895–899. [Google Scholar] [CrossRef]
- Monteiro, E. Design and Implementation of Color-Shift Keying for Visible Light Communications. Master’s Thesis, McMaster University, Hamilton, ON, Canada, 2013. Available online: http://hdl.handle.net/11375/13484 (accessed on 4 August 2022).
- Hoeher, P.A. Visible Light Communications: Theoretical and Practical Foundations; Carl Hanser Verlag GmbH Co. KG: Munich, Germany, 2019; ISBN 978-3446462069. [Google Scholar]
- Yokoi, A.; Son, J. More Description about CSK Constellation. Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs). 2010. 2010. Available online: https://mentor.ieee.org/802.15/dcn/10/15-10-0724-00-0007-csk-constellation-in-all-color-band-combinations.pdf (accessed on 17 August 2022).
- Tang, J.; Zhang, L.; Wu, Z. Exact Bit Error Rate Analysis for Color Shift Keying Modulation. IEEE Commun. Lett. 2018, 22, 284–287. [Google Scholar] [CrossRef]
- Lee, E.A.; Messerschmitt, D.G. Digital Communication; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
- Yan, J.; Wang, F.; Li, Y.; Liu, H.; Gao, Y.; Li, Z. Research on the Effect of Extinction Characteristics of Coal Dust on Visibility. ACS Omega 2022, 7, 28293–28303. [Google Scholar] [CrossRef]
- Sapko, M.J.; Cashdollar, K.L.; Green, G.M. Coal dust particle size survey of US mines. J. Loss Prev. Process Ind. 2007, 20, 616–620. [Google Scholar] [CrossRef]
- Organiscak, J.A.; Page, S.J.; Jankowski, R.A. Sources and Characteristics of Quartz Dust in Coal Mines; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1990; Volume 9271. [Google Scholar]
- Su, X.; Ding, R.; Zhuang, X. Characteristics of dust in coal mines in central north china and its research significance. ACS Omega 2020, 5, 9233–9250. [Google Scholar] [CrossRef] [Green Version]
- Lisakov, S.A.; Mikhanoshina, J.L.; Pavlov, A.N.; Sypin, E.V.; Leonov, G.V. Determination of optical radiation attenuation in dispersed system «coal dust-air». In Proceedings of the 2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, Erlagol, Russia, 29 June–3 July 2015; pp. 353–358. [Google Scholar] [CrossRef]
- Chubb, L.G.; Cauda, E.G. Characterizing particle size distributions of crystalline silica in gold mine dust. Aerosol Air Qual. Res. 2017, 17, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.F.; Jayakody, D.N.K.; Li, Y. Recent trends in underwater visible light communication (UVLC) systems. IEEE Access 2022, 10, 22169–22225. [Google Scholar] [CrossRef]
- Miramirkhani, F.; Uysal, M. Visible light communication channel modeling for underwater environments with blocking and shadowing. IEEE Access 2017, 6, 1082–1090. [Google Scholar] [CrossRef]
- Buys, J.; Janssen, L. Comparison of simultaneous atmospheric attenuation measurements at visible light, mid-infra-red (3–5 μm) and millimetre waves (94 GHz). IEE Proc. H Microwaves Opt. Antennas 1981, 128, 131–136. [Google Scholar] [CrossRef]
- Ebrahim, K.J.; Al-Omary, A. Sandstorm effect on visible light communication. In Proceedings of the 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), Manama, Bahrain, 8–11 May 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Marioth, E.; Koenig, B.; Krause, H.; Loebbecke, S. Fast particle size and droplet size measurements in supercritical CO2. Ind. Eng. Chem. Res. 2000, 39, 4853–4857. [Google Scholar] [CrossRef]
- Brown, W.K.; Wohletz, K.H. Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal distributions. J. Appl. Phys. 1995, 78, 2758–2763. [Google Scholar] [CrossRef]
- Lumileds Holding, B.V. DS68 LUXEON Rebel Color Line Product Datasheet 20171106: Part No. Red: LXM2-PD01-0050, Green: LXML-PM01-0100, Blue: LXML-PB01-0040, 2017. Available online: https://www.luxeonstar.com/assets/downloads/ds68.pdf (accessed on 21 August 2022).
- Son, T.T.; Burton, A.; Le-Minh, H.; Hien, D.Q. Experimental study of PC-to-PC over a visible light channel using Li-Fi USB dongle. In Proceedings of the 2019 26th International Conference on Telecommunications (ICT), Hanoi, Vietnam, 8–10 April 2019; pp. 215–219. [Google Scholar] [CrossRef]
- Palacios Játiva, P.; Román Cañizares, M.; Azurdia-Meza, C.A.; Zabala-Blanco, D.; Dehghan Firoozabadi, A.; Seguel, F.; Montejo-Sánchez, S.; Soto, I. Interference mitigation for visible light communications in underground mines using angle diversity receivers. Sensors 2020, 20, 367. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Sung, C.W.; Ho, S.W.; Wong, W.S. BER analysis for interfering visible light communication systems. In Proceedings of the 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 20–22 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Dong, Z.; Shang, T.; Gao, Y.; Li, Q. Study on VLC channel modeling under random shadowing. IEEE Photonics J. 2017, 9, 7908416. [Google Scholar] [CrossRef]
- LEE Filters. Polyester Filters. Part No. 024 (Scarlet), 738 (Jas Green), 079 (Just Blue). Available online: http://www.leefilters.com/lighting/colour-details.html (accessed on 21 August 2022).
- Thorlabs, Inc. PDA10A2 Si Amplified Fixed Gain Detector User Guide. 2019. Available online: www.thorlabs.us/_sd.cfm?fileName=TTN134700-D02.pdf&partNumber=PDA10A2 (accessed on 21 August 2022).
- Chen, L.; Li, P.; Liu, G.; Cheng, W.; Liu, Z. Development of cement dust suppression technology during shotcrete in mine of China-A review. J. Loss Prev. Process Ind. 2018, 55, 232–242. [Google Scholar] [CrossRef]
- Maruthi Sridhar, B.; Chapin, T.; Vincent, R.; Axe, M.; Frizado, J. Identifying the effects of different construction practices on the spectral characteristics of concrete. Cem. Concr. Res. 2008, 38, 538–542. [Google Scholar] [CrossRef]
Model | Characteristics | |||||
---|---|---|---|---|---|---|
LED/PD Tilt/Rotation | Irregular Walls | Shadowing | Scattering by Dust | Absorption by Dust | Wavelength Dependence | |
Palacios et al., 2022 [18] | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ |
Javaid et al., 2021 [5] | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ |
Palacios et al., 2020 [7] | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ |
Morales and García, 2019 [17] | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ |
Wang et al., 2018 [16] | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ |
Zhai and Zhang, 2015 [15] | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ |
Our proposal | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Parameters | Values | References |
---|---|---|
Data rate | 4-CSK: 24 Mb/s | [11] |
8-CSK: 72 Mb/s | ||
16-CSK: 96 Mb/s | ||
IEEE 802.15.7 CSK constellation | 100-010-001 | [11,26] |
RX samples per symbol | 2 samples/symbol | - |
Center-of-band wavelengths | nm (red) | [42] |
nm (green) | ||
nm (blue) | ||
Data bits per frame | 524,232 bits | [11] |
Frames transmitted per BER data point | 20 frames | - |
Color calibration sequence length | 24 symbols | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerra, R.; Azurdia-Meza, C.A.; Palacios Játiva, P.; Soto, I.; Sandoval, J.; Ijaz, M.; Carrera, D.F. A Wavelength-Dependent Visible Light Communication Channel Model for Underground Environments and Its Performance Using a Color-Shift Keying Modulation Scheme. Electronics 2023, 12, 577. https://doi.org/10.3390/electronics12030577
Becerra R, Azurdia-Meza CA, Palacios Játiva P, Soto I, Sandoval J, Ijaz M, Carrera DF. A Wavelength-Dependent Visible Light Communication Channel Model for Underground Environments and Its Performance Using a Color-Shift Keying Modulation Scheme. Electronics. 2023; 12(3):577. https://doi.org/10.3390/electronics12030577
Chicago/Turabian StyleBecerra, Raimundo, Cesar A. Azurdia-Meza, Pablo Palacios Játiva, Ismael Soto, Jorge Sandoval, Muhammad Ijaz, and Diego Fernando Carrera. 2023. "A Wavelength-Dependent Visible Light Communication Channel Model for Underground Environments and Its Performance Using a Color-Shift Keying Modulation Scheme" Electronics 12, no. 3: 577. https://doi.org/10.3390/electronics12030577
APA StyleBecerra, R., Azurdia-Meza, C. A., Palacios Játiva, P., Soto, I., Sandoval, J., Ijaz, M., & Carrera, D. F. (2023). A Wavelength-Dependent Visible Light Communication Channel Model for Underground Environments and Its Performance Using a Color-Shift Keying Modulation Scheme. Electronics, 12(3), 577. https://doi.org/10.3390/electronics12030577