Automatic Modulation Recognition Based on Deep-Learning Features Fusion of Signal and Constellation Diagram
Abstract
:1. Introduction
2. Methods
3. Experiments
3.1. Detailed Overview of Network Training
3.1.1. Recognition Comparisons of the Proposed Methods under Various Signal Amounts
3.1.2. The Influence of Learning Rate on the Accuracy Performance
3.2. Analysis of Experimental Results
3.2.1. Ablation Experiment
3.2.2. Contrast Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, Q.; Hu, F.; Hao, Q. Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 20, 2595–2621. [Google Scholar] [CrossRef]
- Häring, L.; Chen, Y.; Czylwik, A. Automatic modulation classification methods for wireless OFDM systems in TDD mode. IEEE Trans. Commun. 2010, 58, 2480–2485. [Google Scholar] [CrossRef]
- Salam, A.O.A.; Sheriff, R.E.; Al-Araji, S.R.; Mezher, K.; Nasir, Q. A unified practical approach to modulation classification in cognitive radio using likelihood-based techniques. In Proceedings of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada, 3–6 May 2015; pp. 1024–1029. [Google Scholar]
- Xu, J.L.; Su, W.; Zhou, M. Likelihood-ratio approaches to automatic modulation classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2010, 41, 455–469. [Google Scholar] [CrossRef]
- Huang, S.; Lin, C.; Xu, W.; Gao, Y.; Feng, Z.; Zhu, F. Identification of active attacks in internet of things: Joint model-and data-driven automatic modulation classification approach. IEEE Internet Things J. 2020, 8, 2051–2065. [Google Scholar] [CrossRef]
- Dobre, O.A.; Abdi, A.; Bar-Ness, Y.; Su, W. Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Commun. 2007, 1, 137–156. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Yao, Y.; Wei, Z.; Feng, Z.; Zhang, P. Automatic modulation classification of overlapped sources using multiple cumulants. IEEE Trans. Veh. Technol. 2016, 66, 6089–6101. [Google Scholar] [CrossRef]
- Abdi, A.; Dobre, O.A.; Choudhry, R.; Bar-Ness, Y.; Su, W. Modulation classification in fading channels using antenna arrays. In Proceedings of the IEEE MILCOM 2004. Military Communications Conference, Monterey, CA, USA, 31 October–3 November 2004; Volume 1, pp. 211–217. [Google Scholar]
- Wei, W.; Mendel, J.M. Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Trans. Commun. 2000, 48, 189–193. [Google Scholar] [CrossRef]
- Furtado, R.S.; Torres, Y.P.; Silva, M.O.; Colares, G.S.; Pereira, A.M.; Amoedo, D.A.; Valad ao, M.D.; Carvalho, C.B.; da Costa, A.L.; Júnior, W.S. Automatic Modulation Classification in Real Tx/Rx Environment using Machine Learning and SDR. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–12 January 2021; pp. 1–4. [Google Scholar]
- Zhu, Z.; Aslam, M.W.; Nandi, A.K. Augmented genetic programming for automatic digital modulation classification. In Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing, Kittila, Finland, 29 August–1 September 2010; pp. 391–396. [Google Scholar]
- Dong, S.; Li, Z.; Zhao, L. A modulation recognition algorithm based on cyclic spectrum and SVM classification. In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June 2020; Volume 1, pp. 2123–2127. [Google Scholar]
- Ya, T.; Lin, Y.; Wang, H. Modulation recognition of digital signal based on deep auto-ancoder network. In Proceedings of the 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Prague, Czech Republic, 25–29 July 2017; pp. 256–260. [Google Scholar]
- Muller, F.C.; Cardoso, C.; Klautau, A. A front end for discriminative learning in automatic modulation classification. IEEE Commun. Lett. 2011, 15, 443–445. [Google Scholar] [CrossRef]
- Nandi, A.K.; Azzouz, E.E. Algorithms for automatic modulation recognition of communication signals. IEEE Trans. Commun. 1998, 46, 431–436. [Google Scholar] [CrossRef]
- Mirarab, M.; Sobhani, M. Robust modulation classification for PSK/QAM/ASK using higher-order cumulants. In Proceedings of the 2007 6th International Conference on Information, Communications & Signal Processing, Singapore, 10–13 December 2007; pp. 1–4. [Google Scholar]
- Wu, H.C.; Saquib, M.; Yun, Z. Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Trans. Wirel. Commun. 2008, 7, 3098–3105. [Google Scholar]
- Orlic, V.D.; Dukic, M.L. Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions. IEEE Commun. Lett. 2009, 13, 917–919. [Google Scholar] [CrossRef]
- Wong, M.D.; Ting, S.K.; Nandi, A.K. Naive Bayes classification of adaptive broadband wireless modulation schemes with higher order cumulants. In Proceedings of the 2008 2nd International Conference on Signal Processing and Communication Systems, Gold Coast, QLD, Australia, 15–17 December 2008; pp. 1–5. [Google Scholar]
- Zhu, Z.; Yi, Z.; Li, S.; Li, L. Deep muti-modal generic representation auxiliary learning networks for end-to-end radar emitter classification. Aerospace 2022, 9, 732. [Google Scholar] [CrossRef]
- Hassan, K.; Dayoub, I.; Hamouda, W.; Berbineau, M. Automatic modulation recognition using wavelet transform and neural network. In Proceedings of the 2009 9th International Conference on Intelligent Transport Systems Telecommunications (ITST), Lille, France, 20–22 October 2009; pp. 234–238. [Google Scholar]
- Xie, W.; Hu, S.; Yu, C.; Zhu, P.; Peng, X.; Ouyang, J. Deep learning in digital modulation recognition using high order cumulants. IEEE Access 2019, 7, 63760–63766. [Google Scholar] [CrossRef]
- Hong, S.; Zhang, Y.; Wang, Y.; Gu, H.; Gui, G.; Sari, H. Deep learning-based signal modulation identification in OFDM systems. IEEE Access 2019, 7, 114631–114638. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, H.; Wang, C.; Gan, C.; Xiang, Y. Automatic modulation classification using CNN-LSTM based dual-stream structure. IEEE Trans. Veh. Technol. 2020, 69, 13521–13531. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional radio modulation recognition networks. In Proceedings of the International Conference on Engineering Applications of Neural Networks; Springer: Cham, Switzerland, 2016; pp. 213–226. [Google Scholar]
- Zheng, S.; Qi, P.; Chen, S.; Yang, X. Fusion methods for CNN-based automatic modulation classification. IEEE Access 2019, 7, 66496–66504. [Google Scholar] [CrossRef]
- Kulin, M.; Kazaz, T.; Moerman, I.; De Poorter, E. End-to-end learning from spectrum data: A deep learning approach for wireless signal identification in spectrum monitoring applications. IEEE Access 2018, 6, 18484–18501. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, G.; Ohtsuki, T.; Adachi, F. Multi-task learning for generalized automatic modulation classification under non-Gaussian noise with varying SNR conditions. IEEE Trans. Wirel. Commun. 2021, 20, 3587–3596. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Yang, S.; Li, S. Robust automated VHF modulation recognition based on deep convolutional neural networks. IEEE Commun. Lett. 2018, 22, 946–949. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Yang, J.; Gui, G. Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Trans. Veh. Technol. 2019, 68, 4074–4077. [Google Scholar] [CrossRef]
- Li, L.; Dong, Z.; Zhu, Z.; Jiang, Q. Deep-learning hopping capture model for automatic modulation classification of wireless communication signals. IEEE Trans. Aerosp. Electron. Syst. 2022. [Google Scholar]
- Zhu, Z.; Ji, H.; Zhang, W.; Li, L.; Ji, T. Complex convolutional neural network for signal representation and its application to radar emitter recognition. IEEE Commun. Lett. 2023. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, M.; Han, F.; Gong, Y.; Zhang, J. Spectrum analysis and convolutional neural network for automatic modulation recognition. IEEE Wirel. Commun. Lett. 2019, 8, 929–932. [Google Scholar] [CrossRef]
- Yan, X.; Liu, G.; Wu, H.C.; Feng, G. New automatic modulation classifier using cyclic-spectrum graphs with optimal training features. IEEE Commun. Lett. 2018, 22, 1204–1207. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, W. Carrier frequency and symbol rate estimation based on cyclic spectrum. J. Syst. Eng. Electron. 2020, 31, 37–44. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L. Modulation Classification Based on Signal Constellation and Yolov3. In Proceedings of the 2021 4th International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, 24–26 September 2021; pp. 143–146. [Google Scholar]
- Ma, J.; Jiang, F. Automatic Modulation Classification Using Fractional Low Order Cyclic Spectrum and Deep Residual Networks in Impulsive Noise. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
- Mendis, G.J.; Wei-Kocsis, J.; Madanayake, A. Deep learning based radio-signal identification with hardware design. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2516–2531. [Google Scholar] [CrossRef]
- Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Zhou, Y.; Sebdani, M.M.; Yao, Y.D. Modulation classification based on signal constellation diagrams and deep learning. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 718–727. [Google Scholar] [CrossRef]
- Tian, X.; Chen, C. Modulation pattern recognition based on Resnet50 neural network. In Proceedings of the 2019 IEEE 2nd International Conference on Information Communication and Signal Processing (ICICSP), Weihai, China, 28–30 September 2019; pp. 34–38. [Google Scholar]
- Li, L.; Li, M.; Zhu, Z.; Li, S.; Dai, C. An Efficient Digital Modulation Classification Method Using the Enhanced Constellation Diagram. Available online: https://www.researchgate.net/publication/365374312_An_Efficient_Digital_Modulation_Classification_Method_Using_the_Enhanced_Constellation_Diagram (accessed on 17 November 2022).
Types | Size/Step | Output Size |
---|---|---|
1D Convolution | 3 × 64/1 | 64 × 1 |
Average Pooling | 2 × 1/2 | 32 × 1 |
1D Convolution | 3 × 1/1 | 32 × 1 |
Average Pooling | 2 × 1/2 | 16 × 1 |
Types | Size/Step | Output Size |
---|---|---|
2D Convolution | 3 × 3/2 | 32 × 32 |
Max Pooling | 2 × 2/2 | 16 × 16 |
2D Convolution | 3 × 3/2 | 8 × 8 |
Max Pooling | 2 × 2/2 | 4 × 4 |
Types | Size/Step | Output Size |
---|---|---|
1D Convolution | 3 × 3/1 | 1024 × 1 |
Average Pooling | 2 × 1/2 | 512 × 1 |
1D Convolution | 3 × 1/1 | 512 × 1 |
Average Pooling | 2 × 1/2 | 256 × 4 |
1D Convolution | 3 × 1/1 | 256 × 1 |
Average Pooling | 2 × 1/2 | 128 × 1 |
1D Convolution | 3 × 1/1 | 128 × 1 |
Average Pooling | 2 × 1/2 | 64 × 1 |
1D Convolution | 3 × 1/1 | 64 × 1 |
Average Pooling | 2 × 1/2 | 32 × 1 |
1D Convolution | 3 × 1/1 | 32 × 1 |
Average Pooling | 2 × 1/2 | 16 × 1 |
Parameters | Value |
---|---|
SNR Range | −10 dB~10 dB |
Sampling Frequency | 5 GHz |
Signal Length | 1024 × 2 |
Learning Rate | 0.001 |
Fo/Fc | 0.074 |
Networks | 0dB | −5 dB | −10 dB |
---|---|---|---|
SCFNet | 98.2% | 94.6% | 89.5% |
GoogleNet | 95.7% | 90.0% | 82.0% |
VGGNet | 93.6% | 92.1% | 89.6% |
GCP–DBN | 89.0% | 73.0% | 60.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Yi, Z.; Zhu, Z.; Li, L.; Gong, S.; Li, B.; Wang, M. Automatic Modulation Recognition Based on Deep-Learning Features Fusion of Signal and Constellation Diagram. Electronics 2023, 12, 552. https://doi.org/10.3390/electronics12030552
Han H, Yi Z, Zhu Z, Li L, Gong S, Li B, Wang M. Automatic Modulation Recognition Based on Deep-Learning Features Fusion of Signal and Constellation Diagram. Electronics. 2023; 12(3):552. https://doi.org/10.3390/electronics12030552
Chicago/Turabian StyleHan, Hui, Zhijian Yi, Zhigang Zhu, Lin Li, Shuaige Gong, Bin Li, and Mingjie Wang. 2023. "Automatic Modulation Recognition Based on Deep-Learning Features Fusion of Signal and Constellation Diagram" Electronics 12, no. 3: 552. https://doi.org/10.3390/electronics12030552
APA StyleHan, H., Yi, Z., Zhu, Z., Li, L., Gong, S., Li, B., & Wang, M. (2023). Automatic Modulation Recognition Based on Deep-Learning Features Fusion of Signal and Constellation Diagram. Electronics, 12(3), 552. https://doi.org/10.3390/electronics12030552