Warm Starting Variational Quantum Algorithms with Near Clifford Circuits
Abstract
1. Introduction
2. Method
3. Expressibility
4. Numerical Simulation
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505. [Google Scholar] [CrossRef]
- Wu, Y.; Bao, W.-S.; Cao, S.; Chen, F.; Chen, M.-C.; Chen, X.; Chung, T.-H.; Deng, H.; Du, Y.; Fan, D.; et al. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Phys. Rev. Lett. 2021, 127, 180501. [Google Scholar] [CrossRef] [PubMed]
- Bruzewicz, C.D.; Chiaverini, J.; McConnell, R.; Sage, J.M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 2019, 6, 021314. [Google Scholar] [CrossRef]
- Huang, H.-L.; Wu, D.; Fan, D.; Zhu, X. Superconducting quantum computing: A review. Sci. China Inf. Sci. 2020, 63, 1. [Google Scholar] [CrossRef]
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625. [Google Scholar] [CrossRef]
- Benedetti, M.; Fiorentini, M.; Lubasch, M. Hardware-efficient variational quantum algorithms for time evolution. Phys. Rev. Res. 2021, 3, 033083. [Google Scholar] [CrossRef]
- Huang, H.-L.; Xu, X.-Y.; Guo, C.; Tian, G.; Wei, S.-J.; Sun, X.; Bao, W.-S.; Long, G.-L. Near-Term Quantum Computing Techniques: Variational Quantum Algorithms, Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation. arXiv 2022, arXiv:2211.08737. [Google Scholar]
- Hempel, C.; Maier, C.; Romero, J.; McClean, J.; Monz, T.; Shen, H.; Jurcevic, P.; Lanyon, B.P.; Love, P.; Babbush, R.; et al. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator. Phys. Rev. X 2018, 8, 031022. [Google Scholar] [CrossRef]
- Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J.M.; Gambetta, J.M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242. [Google Scholar] [CrossRef]
- Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P.J.; Aspuru-Guzik, A.; O’brien, J.L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. Quantum circuit learning. Phys. Rev. A 2018, 98, 032309. [Google Scholar] [CrossRef]
- Schuld, M.; Bocharov, A.; Svore, K.M.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308. [Google Scholar] [CrossRef]
- Ding, C.; Xu, X.-Y.; Niu, Y.-F.; Zhang, S.; Bao, W.-S.; Huang, H.-L. Active Learning on a Programmable Photonic Quantum Processor. arXiv 2022, arXiv:2208.02104. [Google Scholar]
- Gong, M.; Huang, H.-L.; Wang, S.; Guo, C.; Li, S.; Wu, Y.; Zhu, Q.; Zhao, Y.; Guo, S.; Qian, H.; et al. Quantum Neuronal Sensing of Quantum Many-Body States on a 61-Qubit Programmable Superconducting Processor. arXiv 2022, arXiv:2201.05957. [Google Scholar]
- Cong, I.; Choi, S.; Lukin, M.D. Quantum convolutional neural networks. Nat. Phys. 2019, 15, 1273. [Google Scholar] [CrossRef]
- Wei, S.; Chen, Y.; Zhou, Z.; Long, G. A quantum convolutional neural network on NISQ devices. AAPPS Bull. 2022, 32, 2. [Google Scholar] [CrossRef]
- Liu, J.; Lim, K.H.; Wood, K.L.; Huang, W.; Guo, C.; Huang, H.-L. Hybrid quantum-classical convolutional neural networks. Sci. China Phys. Mech. Astron. 2021, 64, 290311. [Google Scholar] [CrossRef]
- Huang, H.-L.; Du, Y.; Gong, M.; Zhao, Y.; Wu, Y.; Wang, C.; Li, S.; Liang, F.; Lin, J.; Xu, Y.; et al. Experimental Quantum Generative Adversarial Networks for Image Generation. Phys. Rev. Appl. 2021, 16, 024051. [Google Scholar] [CrossRef]
- Farhi, E.; Goldstone, J.; Gutmann, S. A Quantum Approximate Optimization Algorithm. arXiv 2014, arXiv:1411.4028. [Google Scholar]
- Guerreschi, G.G.; Matsuura, A.Y. QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 2019, 9, 6903. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Qian, Y.; Tao, D. Accelerating variational quantum algorithms with multiple quantum processors. arXiv 2021, arXiv:2106.12819. [Google Scholar]
- Niu, Y.-F.; Zhang, S.; Ding, C.; Bao, W.-S.; Huang, H.-L. Parameter-Parallel Distributed Variational Quantum Algorithm. arXiv 2022, arXiv:2208.00450. [Google Scholar]
- Huang, H.-Y.; Kueng, R.; Preskill, J. Predicting many properties of a quantum system from very few measurements. Nat. Phys. 2020, 16, 1050. [Google Scholar] [CrossRef]
- Hadfield, C.; Bravyi, S.; Raymond, R.; Mezzacapo, A. Measurements of Quantum Hamiltonians with Locally-Biased Classical Shadows. Commun. Math. Phys. 2022, 391, 951. [Google Scholar] [CrossRef]
- Ding, C.; Xu, X.-Y.; Niu, Y.-F.; Bao, W.-S.; Huang, H.-L. Noise-Resistant Quantum State Compression Readout. arXiv 2021, arXiv:2109.06805. [Google Scholar]
- Grant, E.; Wossnig, L.; Ostaszewski, M.; Benedetti, M. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 2019, 3, 214. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.-T.; Choi, S.; Pichler, H.; Lukin, M.D. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices. Phys. Rev. X 2020, 10, 021067. [Google Scholar] [CrossRef]
- Dborin, J.; Barratt, F.; Wimalaweera, V.; Wright, L.; Green, A.G. Matrix product state pre-training for quantum machine learning. Quantum Sci. Technol. 2022, 7, 035014. [Google Scholar] [CrossRef]
- Ravi, G.S.; Gokhale, P.; Ding, Y.; Kirby, W.M.; Smith, K.N.; Baker, J.M.; Love, P.J.; Hoffmann, H.; Brown, K.R.; Chong, F.T. CAFQA: A classical simulation bootstrap for variational quantum algorithms. arXiv 2022, arXiv:2202.12924. [Google Scholar]
- Selinger, P. Efficient Clifford+T approximation of single-qubit operators. arXiv 2012, arXiv:1212.6253. [Google Scholar] [CrossRef]
- Bennett, C.H.; DiVincenzo, D.P. Quantum information and computation. Nature 2000, 404, 247. [Google Scholar] [CrossRef] [PubMed]
- Qassim, H.; Wallman, J.J.; Emerson, J. Clifford recompilation for faster classical simulation of quantum circuits. Quantum 2019, 3, 170. [Google Scholar] [CrossRef]
- Bennink, R.S.; Ferragut, E.M.; Humble, T.S.; Laska, J.A.; Nutaro, J.J.; Pleszkoch, M.G.; Pooser, R.C. Unbiased simulation of near-Clifford quantum circuits. Phys. Rev. A 2017, 95, 062337. [Google Scholar] [CrossRef]
- Nielson, M.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Romero, J.; Babbush, R.; McClean, J.R.; Hempel, C.; Love, P.J.; Aspuru-Guzik, A. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Sci. Technol. 2018, 4, 014008. [Google Scholar] [CrossRef]
- Guerreschi, G.G.; Smelyanskiy, M. Practical optimization for hybrid quantum-classical algorithms. arXiv 2017, arXiv:1701.01450. [Google Scholar]
- Ge, X.; Wu, R.-B.; Rabitz, H. The optimization landscape of hybrid quantum–classical algorithms: From quantum control to NISQ applications. Annu. Rev. Control 2022, 54, 314–323. [Google Scholar] [CrossRef]
- Lundy, M.; Mees, A. Convergence of an annealing algorithm. Math. Program. 1986, 34, 111. [Google Scholar] [CrossRef]
- Sim, S.; Johnson, P.D.; Aspuru-Guzik, A. Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. Adv. Quantum Technol. 2019, 2, 1900070. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79. [Google Scholar] [CrossRef]
- Bravyi, S.; Gosset, D. Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. Phys. Rev. Lett. 2016, 116, 250501. [Google Scholar] [CrossRef] [PubMed]
- Bravyi, S.; Smith, G.; Smolin, J.A. Trading Classical and Quantum Computational Resources. Phys. Rev. X 2016, 6, 021043. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.-F.; Zhang, S.; Bao, W.-S. Warm Starting Variational Quantum Algorithms with Near Clifford Circuits. Electronics 2023, 12, 347. https://doi.org/10.3390/electronics12020347
Niu Y-F, Zhang S, Bao W-S. Warm Starting Variational Quantum Algorithms with Near Clifford Circuits. Electronics. 2023; 12(2):347. https://doi.org/10.3390/electronics12020347
Chicago/Turabian StyleNiu, Yun-Fei, Shuo Zhang, and Wan-Su Bao. 2023. "Warm Starting Variational Quantum Algorithms with Near Clifford Circuits" Electronics 12, no. 2: 347. https://doi.org/10.3390/electronics12020347
APA StyleNiu, Y.-F., Zhang, S., & Bao, W.-S. (2023). Warm Starting Variational Quantum Algorithms with Near Clifford Circuits. Electronics, 12(2), 347. https://doi.org/10.3390/electronics12020347