A Novel Adversarial Learning Framework for Passive Bistatic Radar Signal Enhancement
Abstract
:1. Introduction
- (1)
- An end-to-end PBR signal enhancement framework based on adversarial learning strategy. The framework leverages transferable knowledge from synthetic noisy signals to provide significant SNR gain for PBR and reduce target detection difficulty. Experiments on both simulation and real PBR data have demonstrated the effectiveness of the proposed method.
- (2)
- Automatically processing noisy PBR signals using a multi-level generator based on an encoder-decoder structure. The generator gradually filters out clutter information by compressing the feature dimension of the signal and recovers the clean enhanced signal through the decoder. An additional discriminator based on a convolutional network is designed to evaluate the enhanced signal’s quality.
- (3)
- A hybrid cost function that combines the advantages of gradient penalty and L1/L2-norm constraint. This is proposed to ensure the convergence of the training stage. The gradient penalty and L1/L2-norm constraints are applied to the discriminator and generator, respectively, to ensure that the gradient remains smooth during backward propagation.
2. Related Work
2.1. Signal Model of PBR
2.2. Generative Adversarial Network
3. Radar Signal Enhancement GAN for PBR Target Detection
3.1. Structure of the Generator
3.2. Structure of the Discriminator
3.3. Cost Function of RSEGAN
3.4. CA-CFAR Detection
4. Experiments
4.1. Training of RSEGAN
4.2. Simulation Dataset
4.3. Enhancement Results in the Simulation Scenario
4.4. Analysis of Detection Probability and False Alarm Probability
4.5. Enhancement Results in the Real Scenario
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klintberg, J.; Mckelvey, T.; Dammert, P. A Parametric Approach to Space-Time Adaptive Processing in Bistatic Radar Systems. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 1149–1160. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.-B.; Himed, B. On the performance of the cross-correlation detector for passive radar applications. Signal Process. 2015, 113, 32–37. [Google Scholar] [CrossRef]
- Colone, F.; Bongioanni, C.; Lombardo, P. Multifrequency Integration in FM Radio-Based Passive Bistatic Radar. Part I: Target detection. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 28–39. [Google Scholar] [CrossRef]
- Zaimbashi, A.; Derakhtian, M.; Sheikhi, A. Invariant Target Detection in Multiband FM-Based Passive Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 720–736. [Google Scholar] [CrossRef]
- Griffiths, H.-D.; Long, N.-R.-W. Television Based Bistatic Radar. IEE Proc. F Commun. Radar Signal Process. 1986, 133, 649–657. [Google Scholar] [CrossRef]
- Jin, W.; Lu, X.D.; Xiang, M.-S. Research on Performance Influence of Direct-Path signal for DVB-S Based Passive Radar. J. Electron. 2013, 30, 111–117. [Google Scholar] [CrossRef]
- Chetty, K.; Smith, G.-E.; Woodbridge, K. Through-the-Wall Sensing of Personnel Using Passive Bistatic WiFi Radar at Standoff Distances. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1218–1226. [Google Scholar] [CrossRef]
- Colone, F.; Falcone, P.; Bongioanni, C.; Long, P.-L. WiFi-Based Passive Bistatic Radar: Data Processing Schemes and Experimental Results. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1061–1079. [Google Scholar] [CrossRef]
- Honda, J.; Otsuyama, T. Feasibility Study on Aircraft Positioning by Using ISDB-T Signal Delay. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1787–1790. [Google Scholar] [CrossRef]
- Clemente, C.; Soraghan, J.J. GNSS-Based Passive Bistatic Radar for Micro-Doppler Analysis of Helicopter Rotor Blades. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 491–500. [Google Scholar] [CrossRef]
- Pastina, D.; Santi, F.; Pieralice, F.; Bucciarelli, M.; Ma, H.; Tzagkas, D.; Antoniou, M.N.; Cherniakov, M. Maritime Moving Target Long Time Integration for GNSS-Based Passive Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 3060–3083. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Bao, Q.; Wang, D.; Chen, Z. An Experimental Study of Passive Bistatic Radar Using Uncooperative Radar as a Transmitter. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1868–1872. [Google Scholar] [CrossRef]
- O’Hagan, D.W.; Capria, A.; Kubica, V. Passive Bistatic Radar (PBR) for Harbor Protection Applications. In Proceedings of the IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; pp. 446–450. [Google Scholar]
- Chen, G.; Wang, J. Target Detection Method in Passive Bistatic Radar. J. Syst. Eng. Electron. 2020, 31, 510–519. [Google Scholar]
- Kulpa, K.S.; Czekala, N. Masking Effect and Its Removal in PCL Radar. IEE Proc.-Radar Sonar Navig. 2005, 152, 174–178. [Google Scholar] [CrossRef]
- Yang, Y.; Su, H.; Hu, Q.; Zhou, S.; Huang, J. Centralized Adaptive CFAR Detection With Registration Errors in Multistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2370–2382. [Google Scholar] [CrossRef]
- Abbadi, A.; Bouhedjeur, H.; Bellabas, A.; Menni, T.; Soltani, F. Generalized Closed-Form Expressions for CFAR Detection in Heterogeneous Environment. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1011–1015. [Google Scholar] [CrossRef]
- Tan, D.K.P.; Lesturgie, M.; Sun, H.; Lu, Y. Space Time Interference Analysis and Suppression for Airborne Passive Radar Using Transmissions of Opportunity. IET Radar Sonar Navig. 2014, 8, 142–152. [Google Scholar] [CrossRef]
- Zhu, X.L.; Zhang, X.D. Adaptive RLS Algorithm for Blind Source Separation Using a Natural Gradient. IEEE Signal Process. Lett. 2002, 9, 432–435. [Google Scholar]
- Ma, Y.; Shan, T.; Zhang, Y.D.; Amin, M.G.; Tao, R.; Feng, Y. A Novel Two-Dimensional Sparse-Weight NLMS Filtering Scheme for Passive Bistatic Radar. IEEE Geosci. Remote Sens. Lett. 2016, 13, 676–680. [Google Scholar] [CrossRef]
- Colone, F.; O’Hagan, D.W.; Lombardo, P.; Baker, C.J. A Multistage Processing Algorithm for Disturbance Removal and Target Detection in Passive Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 698–722. [Google Scholar] [CrossRef]
- Colone, F.; Palmarini, C.; Martelli, T.; Tilli, E. Sliding Extensive Cancellation Algorithm for Disturbance Removal in Passive Radar. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1309–1326. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C.; Caddemi, A. Vital Sign Detection and Radar Self-Motion Cancellation through Clutter Identification. IEEE Trans. Microw. Theory Tech. 2021, 69, 1932–1942. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Zhong, L. Mismatched Filter for Analogue TV Based Passive Bistatic Radar. IET Radar Sonar Navig. 2011, 5, 573–581. [Google Scholar] [CrossRef]
- Miranda, V.; Krstulovic, J.; Keko, H.; Moreira, C.; Pereira, J. Reconstructing Missing Data in State Estimation with Autoencoders. IEEE Trans. Power Syst. 2012, 27, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Tan, H.; Bai, X.; Zhou, F. Few-Shot Class-Incremental SAR Target Recognition Based on Hierarchical Embedding and Incremental Evolutionary Network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Pascual, S.; Bonafonte, A.; Serra, J. SEGAN: Speech Enhancement Generative Adversarial Network. Proc. Interspeech 2017, 2017, 174–178. [Google Scholar]
- Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative Adversarial Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [Google Scholar] [CrossRef]
- Wang, H.; Hu, T.; Xu, Z.; Wu, D.; Dai, H.; Lv, P.; Zhang, Y.; Wang, Z. A radar waveform recognition method based on ambiguity function generative adversarial network data enhancement under the condition of small samples. IET Radar Sonar Navig. 2023, 17, 86–98. [Google Scholar] [CrossRef]
- Rahman, M.; Gurbuz, S. Physics-Aware Generative Adversarial Networks for Radar-Based Human Activity Recognition. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 2994–3008. [Google Scholar] [CrossRef]
- Truong, T.; Yanushkevich, S. Generative adversarial network for radar signal synthesis. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–7. [Google Scholar]
- Yue, Y.; Liu, H.; Meng, X.; Li, Y.; Du, Y. Generation of High-precision Ground Penetrating Radar Images Using Improved Least Square Generative Adversarial Networks. Remote Sens. 2021, 13, 4590. [Google Scholar] [CrossRef]
- Chen, C.; Su, Y.; He, Z.; Liu, T.; Song, X. Clutter mitigation in holographic subsurface radar imaging using generative adversarial network with attentive subspace projection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5116214. [Google Scholar] [CrossRef]
- Chen, S.; Shangguan, W.; Taghia, J. Automotive Radar interference mitigation based on a generative adversarial network. In Proceedings of the 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 10–13 November 2020; pp. 728–730. [Google Scholar]
- Wang, S.; An, Q.; Li, S.; Zhao, G.; Sun, H. Wiring effects mitigation for through-wall human motion micro-Doppler signatures using a generative adversarial network. IEEE Sens. J. 2021, 21, 10007–10016. [Google Scholar] [CrossRef]
- Zheng, Y.; Su, J.; Zhang, S.; Tao, M.; Wang, L. Dehaze-AGGAN: Unpaired Remote Sensing Image Dehazing Using Enhanced Attention-Guide Generative Adversarial Networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5630413. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, Z.; Ma, P.; Huang, B. Real-world DEM super-resolution based on generative adversarial networks for improving InSAR topographic phase simulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8373–8385. [Google Scholar] [CrossRef]
- Du, C.; Zhang, L. Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network. Remote Sens. 2021, 13, 4358. [Google Scholar] [CrossRef]
- Zheng, C.; Jiang, X.; Liu, X. Semi-supervised SAR ATR via multi-discriminator generative adversarial network. IEEE Sens. J. 2019, 19, 7525–7533. [Google Scholar] [CrossRef]
- Ren, Z.; Hou, B.; Wu, Q.; Wen, Z. A distribution and structure match generative adversarial network for SAR image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3864–3880. [Google Scholar] [CrossRef]
- Wang, H.; Li, K.; Lu, X.; Zhang, Q.; Luo, Y.; Kang, L. ISAR Resolution Enhancement Method Exploiting Generative Adversarial Network. Remote Sens. 2022, 14, 1291. [Google Scholar] [CrossRef]
- Qin, D.; Gao, X.Z. Enhancing ISAR Resolution by a Generative Adversarial Network. IEEE Geosci. Remote Sens. Lett. 2021, 18, 127–131. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Y.; Tian, Z. LPI Radar Signal Enhancement Based on Generative Adversarial Networks under Small Samples. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications, Chengdu, China, 11–14 December 2020; pp. 1171–1175. [Google Scholar]
- Wang, C.; Wang, P.; Wang, P.; Xue, B.; Wang, D. Using Conditional Generative Adversarial 3-D Convolutional Neural Network for Precise Radar Extrapolation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5735–5749. [Google Scholar] [CrossRef]
- Greco, A.; Bandiera, F.; Maio, D.; Ricci, G. Adaptive Radar Detection of Distributed Targets in Partially-Homogeneous Noise Plus Subspace Interference. In Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006. [Google Scholar]
- Zaimbashi, A. Target Detection in Analog Terrestrial TV-Based Passive Radar Sensor: Joint Delay-Doppler Estimation. IEEE Sens. J. 2017, 17, 5569–5580. [Google Scholar] [CrossRef]
- Gogineni, S.; Setlur, P.; Rangaswamy, M.; Nadakuditi, R. Passive Radar Detection with Noisy Reference Channel Using Principal Subspace Similarity. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 18–36. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5769–5779. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Merkle, N.; Auer, S.; Müller, R.; Reinartz, P. Exploring the Potential of Conditional Adversarial Networks for Optical and SAR Image Matching. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1811–1820. [Google Scholar] [CrossRef]
- Ahmed, I.; Zabit, U.; Salman, A. Self-Mixing Interferometric Signal Enhancement Using Generative Adversarial Network for Laser Metric Sensing Applications. IEEE Access 2019, 7, 174641–174650. [Google Scholar] [CrossRef]
- Garcia, F.D.A.; Rodriguez, A.; Fraidenraich, G.; Filho, J.C.S.S. CA-CFAR Detection Performance in Homogeneous Weibull Clutter. IEEE Geosci. Remote Sens. Lett. 2019, 16, 887–891. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
0.0003 | |
0.9 | |
Batchsize | 256 |
22.5 | |
127.5 | |
10 | |
Epochs | 100 |
Parameter | Value |
---|---|
Center Frequency/GHz | 12.5 |
Bandwidth of Receiver/MHz | 30 |
Baseband Frequency/MHz | 28 |
Sampling Frequency/MHz | 187.5 |
Latitude and Longitude of Receiver | (116° E, 39.54° N) |
Coordinate of Nadir Point | (110.5° E, 0) |
Coordinate | x/m | y/m | z/m |
---|---|---|---|
Transmitter | 0 | ||
Target | |||
Receiver |
Training | Test | ||
---|---|---|---|
SNR/dB | No. of Each SNR | SNR/dB | No. of Each SNR |
−60, −61, −62, −63, −64 | 768 | −60, −61, −62, −63, −64, −66, −68, −70, −72, −74 | 255 |
SNR Before Coherent Integration/dB | −60 | −61 | −62 | −63 | −64 | −66 | −68 | −70 | −72 | −74 |
SNR After Coherent Integration/dB | 12.79 | 12.31 | 11.67 | 11.21 | 10.54 | 9.80 | 8.53 | 7.64 | 7.28 | 6.91 |
SNR after Enhancement by RSEGAN/dB | 19.99 | 19.97 | 19.91 | 19.88 | 19.81 | 20.71 | 19.73 | 17.36 | 15.19 | 12.73 |
SNR Improved by RSEGAN/dB | 7.20 | 7.66 | 8.24 | 8.67 | 9.27 | 10.91 | 11.20 | 9.72 | 7.91 | 5.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, J.; Wang, L.; Wang, C.; Zhou, F. A Novel Adversarial Learning Framework for Passive Bistatic Radar Signal Enhancement. Electronics 2023, 12, 3072. https://doi.org/10.3390/electronics12143072
Che J, Wang L, Wang C, Zhou F. A Novel Adversarial Learning Framework for Passive Bistatic Radar Signal Enhancement. Electronics. 2023; 12(14):3072. https://doi.org/10.3390/electronics12143072
Chicago/Turabian StyleChe, Jibin, Li Wang, Changlong Wang, and Feng Zhou. 2023. "A Novel Adversarial Learning Framework for Passive Bistatic Radar Signal Enhancement" Electronics 12, no. 14: 3072. https://doi.org/10.3390/electronics12143072
APA StyleChe, J., Wang, L., Wang, C., & Zhou, F. (2023). A Novel Adversarial Learning Framework for Passive Bistatic Radar Signal Enhancement. Electronics, 12(14), 3072. https://doi.org/10.3390/electronics12143072