Novel Heuristic Optimization Technique to Solve Economic Load Dispatch and Economic Emission Load Dispatch Problems
Abstract
:1. Introduction
2. Literature Review
3. Formulation of ELD Problem
3.1. Formulation of Economic Dispatch along with Valve Point
3.2. Formulation of the ELD with a Ramp Rate Limit
3.3. Formulation of the EELD Multi-Objective Problem
3.4. Constraints
3.4.1. Power Balance
3.4.2. Power Limits
4. Heuristic Optimization Technique
- It controls the movements of the particles in such a way that they cannot move away from the search area;
- It continuously changes the particles’ positions so the particles cannot stop during the iteration process until the final results are obtained; therefore, there is no need to update the velocity of the particles after every iteration;
- It also attracts the particles so they cannot move to the local solution.
4.1. Initialization of the Swarm
4.2. Updating the Velocity of the Particle
4.3. Updating the Particles’ Positions
4.4. Algorithm of the Proposed MPSO
- ⮚
- Consider the number of particles;
- ⮚
- Define the number of iterations;
- ⮚
- Initialize the swarm using the minimum and maximum values of the generated power, as given in Equations (17) and (18);
- ⮚
- Initialize the velocity of the particles, as shown in Equations (19) and (20);
- ⮚
- Define the objective function of the ELD;
- ⮚
- Define the constraints;
- ⮚
- Initialize the pbest;
- ⮚
- Select the best global values;
- ⮚
- Update the velocity of the particles;
- ⮚
- Insert an attraction factor;
- ⮚
- Update the position of the particles;
- ⮚
- After completing the iteration, collect the best global values;
- ⮚
- Terminate the algorithm if the objective is fulfilled; otherwise, repeat the process again.
5. Case Study and Result Analysis
5.1. Case 1
5.2. Case 2
5.3. Case 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Total generation cost | |
Power generation cost function of the ith units | |
N | Total number of generating units |
Pi | Power of the ith generating unit |
ai, bi, and ci | Fuel cost coefficients [ai(USD/h), bi(USD/MWh), ci(USD/h) |
ELD cost function with valve loading effect | |
Ei and Fi | Valve loading coefficients of the ith generators [Ei(USD/h), Fi(1/MW)]. |
Ei(Pi)) | Environmental emission function |
di, ei, and fi, | Environmental emission coefficients[di(Ton/h), ei(Ton/MWh), fi(Ton/h)] |
and | Minimum and maximum generation of the power limits (MW). |
pbesti | Best previous position yielding for the ith particle |
gbest | Best position discovered by the whole population |
c1 and c2 | Acceleration coefficients |
rand1 and rand2 | Random numbers generated between zero and one |
Sik | Initial position of the randomly generated particle |
New position of the particles | |
Best global position of the particles; N is the population size | |
PD | Demand of power (load demand) |
PL | Line losses |
Initial velocity of the particles | |
Sd | Attraction factor |
References
- Bhattacharya, A.; Chattopadhyay, P.K. Biogeography-Based Optimization for Different Economic Load Dispatch Problems. IEEE Trans. Power Syst. 2009, 25, 1064–1077. [Google Scholar] [CrossRef]
- Abido, M. A novel multiobjective evolutionary algorithm for environmental/economic power dispatch. Electr. Power Syst. Res. 2003, 65, 71–81. [Google Scholar] [CrossRef]
- Farag, A.; Al-Baiyat, S.; Cheng, T. Economic load dispatch multiobjective optimization procedures using linear programming techniques. IEEE Trans. Power Syst. 1995, 10, 731–738. [Google Scholar] [CrossRef]
- Al-Sumait, J.S.; Al-Othman, A.K.; Sykulski, J.K. Application of pattern search method to power system valve point economic load dispatch. Electr. Power Energy Syst. 2007, 29, 720–730. [Google Scholar] [CrossRef] [Green Version]
- Aoki, K.; Satoh, T. Economic dispatch with network security constraints using parametric quadratic programming. IEEE Trans. Power Appar. Syst. 1982, 101, 4548–4556. [Google Scholar] [CrossRef]
- Panigrahi, B.; Pandi, V.R.; Das, S. Adaptive particle swarm optimization approach for static and dynamic economic load dispatch. Energy Convers. Manag. 2008, 49, 1407–1415. [Google Scholar] [CrossRef]
- AlRashidi, M.R.; AlHajri, M.F.; El-Hawary, M.E. Enhanced particle swarm optimization approach for solving the non-convex optimal power flow. World Acad. Sci. Eng. Technol. 2010, 62, 651–655. [Google Scholar]
- Wang, X.; Zhang, Y. Chaotic quantum-behaved PSO algorithm for power system economic load dispatch. Int. J. Digit. Content Technol. Its Appl. 2011, 5, 290–297. [Google Scholar]
- Shrivastava, A.; Kumar, D. A New Aggrandized Class Topper Optimization Algorithm to Solve Economic Load Dispatch Problem in a Power System. Cybernetics 2020, 52, 4187–4197. [Google Scholar]
- Santos, C.L.; Cocco, M.V. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects. Gen. Energy Convers. Manag. 2008, 49, 3080–3085. [Google Scholar] [CrossRef]
- Sudhakaran, M.; Slochanal, S.M.R. Integrating Genetic Algorithm and Tabu Search for Emission and Economic Dispatch Problem. J. Inst. Eng. 2005, 86, 22–27. [Google Scholar]
- Pandian, S.; Muthu, V.; Thanushkodi, K. An evolutionary programming based efficient particle swarm optimization for economic dispatch problem with valve-point loading. Eur. J. Sci. Res. 2011, 52, 385–397. [Google Scholar]
- Chakraborty, S.; Senjyu, T.; Yona, A.; Saber, A.Y.; Funabashi, T. Solving economic load dispatch problem with valve-point effects using a hybrid quantum mechanics inspired particle swarm optimization. IET Gener. Transm. Distrib. 2011, 5, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Gholamghasemi, M.; Akbari, E.; Asadpoor, M.B.; Ghasemi, M. A new solution to the non-convex economic load dispatch problems using phasor particle swarm optimization. Appl. Soft Comput. 2019, 79, 111–124. [Google Scholar] [CrossRef]
- Santos, C.L.; Chu-Sheng, L. Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches. J. Electr. Power Energy Syst. 2008, 30, 297–307. [Google Scholar]
- Dixit, G.P.; Dubey, H.M.; Pandit, M.; Panigrahi, B.K. Economic load dispatch using artificial bee colony optimization. Int. J. Adv. Electron. Eng. 2011, 11, 620–625. [Google Scholar]
- Reddy, M.S.; Subramanyam, P.S. A Meta-Heuristic Approach of Bat Algorithm to Evaluate the Combined EED Problem. Int. J. Eng. Res. Technol. 2014, 3, 35–44. [Google Scholar]
- Said, M.; El-Rifaie, A.M.; Tolba, M.A.; Houssein, E.H.; Deb, S. An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem. Mathematics 2021, 9, 2770. [Google Scholar] [CrossRef]
- Dos Santos Coelho, L.; de Almeida AD, V.; Mariani, V.C. Cultural differential evolution approach to optimize the economic dispatch of electrical energy using thermal generators. In Proceedings of the 2008 IEEE International Conference on Emerging Technologies and Factory Automation, Hamburg, Germany, 15–18 September 2008; pp. 1378–1384. [Google Scholar]
- Pandi, V.R.; Panigrahi, B.K.; Mohapatra, A.; Mallick, M.K. Economic load dispatch solution by improved harmony search with wavelet mutation. Int. J. Comput. Sci. Eng. 2011, 6, 122–131. [Google Scholar] [CrossRef]
- Banerjee, S.; Maity, D.; Chanda, C.K. Teaching learning based optimization for economic load dispatch problem considering valve point loading effect. Electr. Power Energy Syst. 2015, 73, 456–464. [Google Scholar] [CrossRef]
- Salaria, U.A.; Menhas, M.I.; Manzoor, S. Quasi oppositional population based global particle swarm optimizer with inertial weights (qpgpso-w) for solving economic load dispatch problem. IEEE Access 2021, 9, 134081–134095. [Google Scholar] [CrossRef]
- Niknam, T.; Mojarrad, H.D.; Meymand, H.Z. Non-smooth economic dispatch computation by fuzzy and self adaptive particle swarm optimization. Appl. Soft Comput. 2011, 11, 2805–2817. [Google Scholar] [CrossRef]
- Noman, N.; Iba, H. Differential evolution for economic load dispatch problems. Electr. Power Syst. 2008, 78, 1322–1331. [Google Scholar] [CrossRef]
- Said, M.; Houssein, E.H.; Deb, S.; Ghoniem, R.M.; Elsayed, A.G. Economic Load Dispatch Problem Based on Search and Rescue Optimization Algorithm. IEEE Access 2022, 10, 47109–47123. [Google Scholar] [CrossRef]
- Hao, W.; Wang, J.; Li, X.; Wang, M.; Zhang, M. Arithmetic optimization algorithm based on elementary function disturbance for solving economic load dispatch problem in power system. Appl. Intell. 2022, 52, 11846–11872. [Google Scholar] [CrossRef]
- Dai, B.; Wang, F.; Chang, Y. Multi-objective economic load dispatch method based on data mining technology for large coal-fired power plants. Control Eng. Pract. 2022, 121, 105018. [Google Scholar] [CrossRef]
- Alghamdi, A.S. Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems. Energies 2022, 15, 3904. [Google Scholar] [CrossRef]
- Al-Betar, M.A.; Awadallah, M.A.; Makhadmeh, S.N.; Abu Doush, I.; Abu Zitar, R.; Alshathri, S.; Elaziz, M.A. A hybrid Harris Hawks optimizer for economic load dispatch problems. Alex. Eng. J. 2023, 64, 365–389. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Eid, A.; Nasrat, L.; Jurado, F.; Elnaggar, M.F. A developed eagle-strategy supply-demand optimizer for solving economic load dispatch problems. Ain Shams Eng. J. 2023, 14, 32–46. [Google Scholar] [CrossRef]
- Tai, T.-C.; Lee, C.-C.; Kuo, C.-C. A Hybrid Grey Wolf Optimization Algorithm Using Robust Learning Mechanism for Large Scale Economic Load Dispatch with Vale-Point Effect. Appl. Sci. 2023, 13, 2727. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Hao, W.-K.; Wang, J.-S.; Zhu, J.-H.; Zhao, X.-R.; Zheng, Y. Manta ray foraging optimization algorithm with mathematical spiral foraging strategies for solving economic load dispatching problems in power systems. Alex. Eng. J. 2023, 70, 613–640. [Google Scholar] [CrossRef]
- Wang, R.; Xu, T.; Xu, H. Robust multi-objective load dispatch in microgrid involving unstable renewable generation. Int. J. Electr. Power Energy Syst. 2023, 148, 137–149. [Google Scholar] [CrossRef]
- Lu, X.; Li, H.; Zhou, K.; Yang, S. Optimal load dispatch of energy hub considering uncertainties of renewable energy and demand response. Energy 2023, 262, 285–307. [Google Scholar] [CrossRef]
- Fu, L.; Ouyang, H. A constrained cooperative adaptive multi-population differential evolutionary algorithm for economic load dispatch problems. Appl. Soft Comput. 2022, 121, 15–26. [Google Scholar] [CrossRef]
- Victoire, T.A.A.; Jeyakumar, A.E. Hybrid PSO–SQP for economic dispatch with valve-point effect. Electr. Power Syst. Res. 2004, 71, 51–59. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, Y. Multiobjective Economic Load Dispatch Problem Solved by New PSO. Adv. Electr. Eng. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tawhid, M.A.; Savsani, V. Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems. Neural Comput. Appl. 2019, 31, 915–929. [Google Scholar] [CrossRef]
- Singh, N.; Nighoskar, A.; Ram Krishna, S. Economic Load Dispatch with Valve Loading Effects Optimize By BBMO. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 104–107. [Google Scholar]
- Ahmadi, B.; Ceylan, O.; Ozdemir, A.; Fotuhi-Firuzabad, M. A multi-objective frame work for distributed energy resources planning and storage management. Appl. Energy 2022, 314, 127–142. [Google Scholar] [CrossRef]
Gen. Units | |||||||
---|---|---|---|---|---|---|---|
1 | 0 | 680 | 550 | 8.10 | 0.00028 | 300 | 0.035 |
2 | 0 | 360 | 309 | 8.10 | 0.00056 | 200 | 0.042 |
3 | 0 | 360 | 307 | 8.10 | 0.00056 | 150 | 0.042 |
4 | 60 | 180 | 240 | 7.74 | 0.00324 | 150 | 0.063 |
5 | 60 | 180 | 240 | 7.74 | 0.00324 | 150 | 0.063 |
6 | 60 | 180 | 240 | 7.74 | 0.00324 | 150 | 0.063 |
7 | 60 | 180 | 240 | 7.74 | 0.00324 | 150 | 0.063 |
8 | 60 | 180 | 240 | 7.74 | 0.00324 | 150 | 0.063 |
9 | 60 | 180 | 240 | 7.74 | 0.00324 | 150 | 0.063 |
10 | 40 | 120 | 126 | 8.60 | 0.00284 | 100 | 0.084 |
11 | 40 | 120 | 126 | 8.60 | 0.00284 | 100 | 0.084 |
12 | 55 | 120 | 126 | 8.60 | 0.00284 | 100 | 0.084 |
13 | 55 | 120 | 126 | 8.60 | 0.00284 | 100 | 0.084 |
Power Output | HS [20] | DE [19] | HQPSO [10] | TLBO [21] | GPSO-w [22] | QPGPSO [22] | HHO [29] | ESCSDO [30] | PSO [36] | MPSO |
---|---|---|---|---|---|---|---|---|---|---|
P1(MW) | 628.318 | 628.317 | 628.318 | 364.99 | 628.3185 | 628.3185 | 538.5587 | 628.29 | ||
P2(MW) | 149.59 | 149.24 | 149.109 | 227.95 | 224.3707 | 223.3356 | 75.6427 | 149.68 | ||
P3(MW) | 222.74 | 223.168 | 223.322 | 217.46 | 148.7126 | 298.6696 | 224.3995 | 222.76 | ||
P4(MW) | 109.86 | 109.85 | 109.865 | 95.225 | 60 | 109.8547 | 109.8666 | 109.88 | ||
P5(MW) | 60 | 109.86 | 109.862 | 106.67 | 109.865 | 60 | 109.8666 | 60 | ||
P6(MW) | 109.87 | 109.866 | 109.866 | 123.54 | 109.6557 | 60 | 109.8666 | 109.85 | ||
P7(MW) | 109.87 | 109.82 | 109.791 | 112.53 | 60 | 60 | 109.8666 | 109.854 | ||
P8(MW) | 109.86 | 109.82 | 60.000 | 144.22 | 159.73 | 109.866 | 109.8666 | 109.785 | ||
P9(MW) | 109.686 | 60 | 109.866 | 126.07 | 109.5848 | 60 | 109.8666 | 109.899 | ||
P10(MW) | 40 | 40 | 40 | 60.236 | 40 | 40 | 40 | 40 | ||
P11(MW) | 40 | 40 | 40 | 48.475 | 40 | 40 | 77.39996 | 40 | ||
P12(MW) | 55 | 55 | 55 | 91.364 | 55 | 55 | 92.39991 | 55 | ||
P13(MW) | 55 | 55 | 55 | 81.239 | 55 | 55 | 92.39991 | 55 | ||
Power output (MW) | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | |
Total fuel cost (USD/h) | 17,963.83 | 17,963.94 | 17,963.95 | 18,141.02 | 17,978.62 | 19,971.85 | 17,986.03 | 18,028.19 | 18,205.78 | 17,962.72 |
CPU time (s) | 13.7 | 5.42 | 7.58 | 31.6 | 38.4 | 40 | 5.7 | 3.82 | 77.37 | 1.8921 |
No. Unit | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 671 | 10.1 | 0.000299 | 150 | 455 | 400 | 80 | 120 |
2 | 574 | 10.2 | 0.000183 | 150 | 455 | 300 | 80 | 120 |
3 | 374 | 8.8 | 0.001126 | 20 | 130 | 105 | 130 | 130 |
4 | 374 | 8.8 | 0.001126 | 20 | 130 | 100 | 130 | 130 |
5 | 461 | 10.4 | 0.000205 | 150 | 470 | 90 | 80 | 120 |
6 | 630 | 10.1 | 0.000301 | 135 | 460 | 400 | 80 | 120 |
7 | 548 | 9.8 | 0.000364 | 135 | 465 | 350 | 80 | 120 |
8 | 227 | 11.2 | 0.000338 | 60 | 300 | 95 | 65 | 100 |
9 | 173 | 11.2 | 0.000807 | 25 | 162 | 105 | 60 | 100 |
10 | 175 | 10.7 | 0.001203 | 25 | 160 | 110 | 60 | 100 |
11 | 186 | 10.2 | 0.003586 | 20 | 80 | 60 | 80 | 80 |
12 | 230 | 9.9 | 0.005513 | 20 | 80 | 40 | 80 | 80 |
13 | 225 | 13.1 | 0.000371 | 25 | 85 | 30 | 80 | 80 |
14 | 309 | 12.1 | 0.001929 | 15 | 55 | 20 | 55 | 55 |
15 | 323 | 12.4 | 0.004447 | 15 | 55 | 20 | 55 | 55 |
Power Output (MW) | PPSO [14] | Fuzzy and APSO [23] | GPSO-w [22] | GA [24] | G- SCNHGWO [28] | ESCSDO [30] | PSO [23] | MPSO |
---|---|---|---|---|---|---|---|---|
P1 | 455 | 455 | - | - | 455 | 455 | 454.9999 | 421.4 |
P2 | 455 | 455 | - | - | 380 | 379.9996 | 454.9999 | 455 |
P3 | 130 | 130 | - | - | 130 | 129.9999 | 130 | 130.6 |
P4 | 130 | 130 | - | - | 130 | 130 | 130 | 131.6 |
P5 | 231.05 | 271.78 | - | - | 170 | 170 | 234.2005 | 341 |
P6 | 460 | 460 | - | - | 460 | 460 | 460 | 460 |
P7 | 465 | 465 | - | - | 430 | 430 | 464.9999 | 465 |
P8 | 60 | 60 | - | - | 67.9593 | 70.257 | 60 | 70 |
P9 | 25 | 25 | - | - | 58.0137 | 59.332 | 25 | 21.6 |
P10 | 35.5224 | 25 | - | - | 159.99 | 159.9 | 30.9939 | 20 |
P11 | 74.29 | 43.41 | - | - | 80 | 80 | 76.7014 | 20 |
P12 | 80 | 55 | - | - | 80 | 80 | 79.9999 | 63.2 |
P13 | 25 | 25 | - | - | 25 | 25 | 25 | 22 |
P14 | 15 | 15 | - | - | 17.9118 | 15 | 15 | 13.6 |
P15 | 15 | 15 | - | - | 15 | 15 | 15 | 15 |
Total Power (MW) | 2650 | 2650 | 2650 | 2650 | 2650 | 2650 | 2650 | 2650 |
Fuel Cost (USD/h) | 32,543.289 | 32,548.06 | 32,548.6 | 33,063.5 | 32,687.10 | 32,692.401 | 32,858.01 | 32,465.69 |
CPU time (s) | 3.47 | 8.7 | 40 | 33.5 | 14.92 | 2.90 | 11.3 | 1.87 |
Gen. Unit | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.1525 | 38.54 | 756.8 | 0.0042 | 0.33 | 13.86 | 10 | 125 |
2 | 0.106 | 46.2 | 451.4 | 0.004 | 0.33 | 13.9 | 10 | 150 |
3 | 0.02083 | 40.159 | 1049.99 | 0.00683 | −0.55 | 40.27 | 35 | 225 |
4 | 0.0356 | 38.31 | 1234.5 | 0.0068 | −0.55 | 40.27 | 35 | 210 |
5 | 0.0211 | 36.33 | 1658.6 | 0.0046 | −0.52 | 42.7 | 130 | 325 |
6 | 0.0179 | 38.27 | 1356.7 | 0.0042 | −0.52 | 42.7 | 125 | 315 |
Output Power | BAT [17] | ABC [16] | RGA [17] | ACB [18] | MPSO |
---|---|---|---|---|---|
P1(MW) | 92.3288 | 92.3297 | 92.315 | 79.4 | |
P2(MW) | 98.3910 | 98.3912 | 98.3707 | 99.98 | |
P3(MW) | 150.1132 | 150.1948 | 150.1997 | 154.4 | |
P4(MW) | 148.586 | 148.5588 | 148.5549 | 145.84 | |
P5(MW) | 220.4007 | 220.4043 | 220.4051 | 223.26 | |
P6(MW) | 218.1267 | 218.1307 | 218.115 | 224.14 | |
Losses(MW) | 28.008975 | 28.009673 | 29.725 | 28.004 | 27.26 |
Power output (MW) | 928 | 928 | 929.725 | 928.004 | 927.26 |
Fuel cost (USD/h) | 48,350.163 | 48,350.683 | 48,567.7 | 48,108 | 47,889.45 |
Emission (Ton/h) | 693.772 | 693.788 | 694.19 | 693.791 | 669.3217 |
Total cost(USD/h) | 81,527.739 | 81,529 | 81,764 | 81,527 | 81,489.12 |
Computation time(s) | 11.47 | 5.28 | 2.94 | 3.81 | 1.72 |
Generating Units | hi |
---|---|
1 | 65.9 |
2 | 61.6 |
3 | 42.4 |
4 | 47.89 |
5 | 43.64 |
6 | 51.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, N.; Chakrabarti, T.; Chakrabarti, P.; Margala, M.; Gupta, A.; Praveen, S.P.; Krishnan, S.B.; Unhelkar, B. Novel Heuristic Optimization Technique to Solve Economic Load Dispatch and Economic Emission Load Dispatch Problems. Electronics 2023, 12, 2921. https://doi.org/10.3390/electronics12132921
Singh N, Chakrabarti T, Chakrabarti P, Margala M, Gupta A, Praveen SP, Krishnan SB, Unhelkar B. Novel Heuristic Optimization Technique to Solve Economic Load Dispatch and Economic Emission Load Dispatch Problems. Electronics. 2023; 12(13):2921. https://doi.org/10.3390/electronics12132921
Chicago/Turabian StyleSingh, Nagendra, Tulika Chakrabarti, Prasun Chakrabarti, Martin Margala, Amit Gupta, S. Phani Praveen, Sivaneasan Bala Krishnan, and Bhuvan Unhelkar. 2023. "Novel Heuristic Optimization Technique to Solve Economic Load Dispatch and Economic Emission Load Dispatch Problems" Electronics 12, no. 13: 2921. https://doi.org/10.3390/electronics12132921
APA StyleSingh, N., Chakrabarti, T., Chakrabarti, P., Margala, M., Gupta, A., Praveen, S. P., Krishnan, S. B., & Unhelkar, B. (2023). Novel Heuristic Optimization Technique to Solve Economic Load Dispatch and Economic Emission Load Dispatch Problems. Electronics, 12(13), 2921. https://doi.org/10.3390/electronics12132921