Accurate Multi-Channel QCM Sensor Measurement Enabled by FPGA-Based Embedded System Using GPS
Abstract
:1. Introduction
2. Frequency Measurement Electronic System
2.1. Frequency Measurement System
2.2. Oscillator Realization
3. Implementation and Experimental Results
- -
- The Frequencemetre module, which corresponds to the proposed reciprocal counter and delivers a 32-bit sequence of three counter values representing the digital frequency measurement, as determined by Equation (3).
- -
- The I2c_Slave_top module, which represents a hierarchical communication using the I2c protocol that is connected to and exchanges data with the microcontroller for the purpose of frequency measurement display. This module receives the counter values from the Frequencemetre module and transmits them via the I2c communication link to the microcontroller (PIC32MX) for further processing and display of the corresponding normalized frequency change (in Hz) based on the QCM microbalance oscillation.
- -
- The OBUFDS block, which is the inner logic oscillator circuit that provides the oscillating QCM signal while reducing the need for extra external logic circuits to function as an inverting amplifier oscillator.
4. Comparison with Similar Works
5. Conclusions and Future work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhan, M.; Xie, X. Precision Measurement Physics: Physics That Precision Matters. Natl. Sci. Rev. 2020, 7, 1795. [Google Scholar] [CrossRef] [PubMed]
- Fauzi, F.; Rianjanu, A.; Santoso, I.; Triyana, K. Gas and Humidity Sensing with Quartz Crystal Microbalance (QCM) Coated with Graphene-Based Materials—A Mini Review. Sens. Actuators A Phys. 2021, 330, 112837. [Google Scholar] [CrossRef]
- Burda, I. Advanced Impedance Spectroscopy for QCM Sensor in Liquid Medium. Sensors 2022, 22, 2337. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Deng, F.; Xu, M.; Wang, J.; Wei, Z.; Wang, Y. GO/Cu2O Nanocomposite Based QCM Gas Sensor for Trimethylamine Detection under Low Concentrations. Sens. Actuators B Chem. 2018, 273, 498–504. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of Electronic Nose (e-Nose) and Electronic Tongue (e-Tongue) in Food Quality-Related Properties Determination: A Review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Matsumoto, K.; Tiu, B.D.B.; Kawamura, A.; Advincula, R.C.; Miyata, T. QCM Sensing of Bisphenol A Using Molecularly Imprinted Hydrogel/Conducting Polymer Matrix. Polym. J. 2016, 48, 525–532. [Google Scholar] [CrossRef]
- Clegg, J.R.; Irani, A.S.; Ander, E.W.; Ludolph, C.M.; Venkataraman, A.K.; Zhong, J.X.; Peppas, N.A. Synthetic Networks with Tunable Responsiveness, Biodegradation, and Molecular Recognition for Precision Medicine Applications. Sci. Adv. 2019, 5, eaax7946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakimova, L.S.; Ziganshin, M.A.; Sidorov, V.A.; Kovalev, V.V.; Shokova, E.A.; Tafeenko, V.A.; Gorbatchuk, V.V. Molecular Recognition of Organic Vapors by Adamantylcalix[4]Arene in QCM Sensor Using Partial Binding Reversibility. J. Phys. Chem. B 2008, 112, 15569–15575. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Haupt, K.; Feller, K.-H. Development of a QCM-D Biosensor for Ochratoxin A Detection in Red Wine. Talanta 2017, 166, 193–197. [Google Scholar] [CrossRef]
- Cervera-Chiner, L.; Juan-Borrás, M.; March, C.; Arnau, A.; Escriche, I.; Montoya, Á.; Jiménez, Y. High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) Immunosensor for Pesticide Detection in Honey. Food Control 2018, 92, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kuchmenko, T.A.; Lvova, L.B. A Perspective on Recent Advances in Piezoelectric Chemical Sensors for Environmental Monitoring and Foodstuffs Analysis. Chemosensors 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung Dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Yuwono, A.S.; Lammers, P.S. Odor Pollution in the Environment and the Detection Instrumentation. Agric. Eng. Int. 2004, VI, 1–33. [Google Scholar]
- Chen, Q.; Huang, X.; Yao, Y.; Mao, K. Analysis of the Effect of Electrode Materials on the Sensitivity of Quartz Crystal Microbalance. Nanomaterials 2022, 12, 975. [Google Scholar] [CrossRef] [PubMed]
- Alassi, A.; Benammar, M.; Brett, D. Quartz Crystal Microbalance Electronic Interfacing Systems: A Review. Sensors 2017, 17, 2799. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-Y.; Choi, J.-W. Review—Electronic Circuit Systems for Piezoelectric Resonance Sensors. J. Electrochem. Soc. 2020, 167, 037560. [Google Scholar] [CrossRef]
- Lucklum, R.; Eichelbaum, F. Interface Circuits for QCM Sensors. In Piezoelectric Sensors; Steinem, C., Janshoff, A., Eds.; Springer Series on Chemical Sensors and Biosensors; Springer: Berlin/Heidelberg, Germany, 2007; Volume 5, pp. 3–47. ISBN 978-3-540-36567-9. [Google Scholar]
- Edvardsson, M.; Rodahl, M.; Kasemo, B.; Höök, F. A Dual-Frequency QCM-D Setup Operating at Elevated Oscillation Amplitudes. Anal. Chem. 2005, 77, 4918–4926. [Google Scholar] [CrossRef]
- Eichelbaum, F.; Borngräber, R.; Schröder, J.; Lucklum, R.; Hauptmann, P. Interface Circuits for Quartz-Crystal-Microbalance Sensors. Rev. Sci. Instrum. 1999, 70, 2537–2545. [Google Scholar] [CrossRef]
- Park, J.-Y.; Pérez, R.L.; Ayala, C.E.; Vaughan, S.R.; Warner, I.M.; Choi, J.-W. A Miniaturized Quartz Crystal Microbalance (QCM) Measurement Instrument Based on a Phase-Locked Loop Circuit. Electronics 2022, 11, 358. [Google Scholar] [CrossRef]
- Fang, Y. Design of Equal Precision Frequency Meter Based on FPGA. Engineering 2012, 4, 696–700. [Google Scholar] [CrossRef]
- Moure, M.J.; Valdes, M.D.; Rodiz, P.; Rodriguez-Pardo, L.; Farina, J. An FPGA-Based System on Chip for the Measurement of QCM Sensors Resolution. In Proceedings of the 2006 International Conference on Field Programmable Logic and Applications, Madrid, Spain, 28–30 August 2006; IEEE: Madrid, Spain, 2006; pp. 1–4. [Google Scholar]
- Valdes, M.D.; Moure, M.J.; Rodriguez, L.; Farina, J. Implementation of a Frequency Measurement Circuit for High-Accuracy QCM Sensors. In Proceedings of the 2008 4th Southern Conference on Programmable Logic, Bariloche, Argentina, 26–28 March 2008; IEEE: Bariloche, Argentina, 2008; pp. 233–236. [Google Scholar]
- Xilinx, Datasheet Virtex-6 FPGA ML-605 Evaluation Kit, Part Number: EK-V6-ML605-G. 2012. Available online: https://docs.xilinx.com/v/u/en-US/ug534 (accessed on 2 February 2023).
- Osterdock, T.N.; Kusters, J.A. Using a New GPS Frequency Reference in Frequency Calibration Operations. In Proceedings of the 1993 IEEE International Frequency Control Symposium, Salt Lake City, UT, USA, 2–4 June 1993; IEEE: Salt Lake City, UT, USA, 1993; pp. 33–39. [Google Scholar]
- Stovbun, N.S.; Gulyakov, S.A. Development of the Dual-Channel Frequency Meter for Measurements with Hydrostatic Pressure Sensor. IOP Conf. Ser. Earth Environ. Sci. 2021, 946, 012018. [Google Scholar] [CrossRef]
- OBUFDS. Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide (UG953) • Reader • Documentation Portal. Available online: https://docs.xilinx.com/r/en-US/ug953-vivado-7series-libraries/OBUFDS (accessed on 2 February 2023).
- Valdes, M.D.; Moure, M.J.; Rodriguez, L.; Farina, J. Improving a Frequency Measurement Circuit for High-Accuracy QCM Sensors. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; IEEE: Cambridge, UK, 2008; pp. 998–1002. [Google Scholar]
- Batarseh, M.G.; Al-Hoor, W.; Huang, L.; Iannello, C.; Batarseh, I. Window-Masked Segmented Digital Clock Manager-FPGA-Based Digital Pulsewidth Modulator Technique. IEEE Trans. Power Electron. 2009, 24, 2649–2660. [Google Scholar] [CrossRef]
- Fernandez Molanes, R.; Farina, J.; Rodriguez-Andina, J.J. Field-Programmable System-on-Chip for High-Accuracy Frequency Measurements in QCM Sensors. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; IEEE: Vienna, Austria, 2013; pp. 2267–2272. [Google Scholar]
- Karapınar, M.; Gürkan, S.; Öner, P.A.; Doğan, S. Design of a Multi-Channel Quartz Crystal Microbalance Data Acquisition System. Meas. Sci. Technol. 2018, 29, 075009. [Google Scholar] [CrossRef]
- Misbah, M.; Rivai, M.; Kurniawan, F. Quartz Crystal Microbalance Based Electronic Nose System Implemented on Field Programmable Gate Array. TELKOMNIKA 2019, 17, 370. [Google Scholar] [CrossRef]
- Wijayanto, V.R.; Sakti, S.P. Design of Dual Edge 0.5 Hz Precision Frequency Counter for QCM Sensor. Appl. Mech. Mater. 2015, 771, 29–32. [Google Scholar] [CrossRef]
- Syahbana, M.A.; Santjojo, D.J.H.D.; Sakti, S.P. High-Resolution Multiple Channel Frequency Counter Using Spartan-3E FPGA. In Proceedings of the 2016 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), Malang, Indonesia, 10–11 August 2016; IEEE: Malang, Indonesia, 2016; pp. 111–114. [Google Scholar]
- Murrieta-Rico, F.N.; Petranovskii, V.; Sergiyenko, O.Y.; Hernandez-Balbuena, D.; Lindner, L. A New Approach to Measurement of Frequency Shifts Using the Principle of Rational Approximations. Metrol. Meas. Syst. 2017, 24, 45–56. [Google Scholar] [CrossRef]
FPGA Technology | GCLK | DCMs | BRAMs | LUTs | Slices | IOBs | FFs | Dynamic PWR (mW) | Fmax (MHz) | |
---|---|---|---|---|---|---|---|---|---|---|
Proposed Work | Virtex-6 XC6VLX240T | 1 (12.5%) | 0 (0%) | 0 (0%) | 527 (1%) | 188 (1%) | 13 (2%) | 733 (1%) | 120 | 324.4 |
Ref. [22] | Virtex-4 4vlx25fft668-10 | 2 (6%) | 1 (12%) | X | 1625 (7.5%) | 922 (8.5%) | 8 (1.5%) | 774 (3.5%) | NC | 102.963 |
Ref. [28] | Spartan-3 XC3S200 | NC | 1 (25%) | 1 (9%) | 460 (12%) | 230 (12%) | 5 (3%) | 460 (12%) | NC | 200 |
References | Hardware | Reference Time Base Source | Active QCR | Techniques | Precision Achieved | Resources for Frequency Measurement | Reconfigurability with Multi-Channel System |
---|---|---|---|---|---|---|---|
[28] | Xilinx Spartan 3 | External 50 MHz oscillator | External | Conventional frequency counter, differential delay lines (DLL) | 0.05 Hz | 230 slices, 1 DCM, 9 IOBs, 17,280 BRAMs | Yes |
[20] | Low-pass filter, amplifier, PLL with VCO, microcontroller, temperature sensor | NC | External | Phase-locked loop circuit (PLL) | 0022 Hz | NC | Yes |
[22] | Virtex 4, 32-bit MicroBlaze microprocessor | NC | External | Conventional frequency counter | <1 Hz | 922 slices, 774 flip-flops, 1625 LUTs, 8 IOBs, 21 FIFO16, 1 GCLKS and 3 DSP48s | Yes |
[30] | DE-2 board | PLL 200 MHz signal | External | Reciprocal counter, time-to-digital converters (TDCs) | 0.25 Hz with reciprocal counter | NC | Yes |
[31] | Arduino Atmega 2560 microcontroller, PIC16F628A per channel | Arduino 1 Hz signal | External | Conventional frequency counter | 1 Hz | One microcontroller per channel | No |
[32] | Spartan 3 | External 50 MHz oscillator | External | Conventional frequency counter | 1 Hz | NC | Yes |
[33] | CPLD XC2C256 | 16.9344 MHz external TCXO oscillator | External | Conventional frequency counter | 0.5 Hz | 228 macrocells, 19 function blocks and 72% of registers | Yes |
[34] | Spartan-3E (XC3S250E) | 100 MHz TCXO oscillator | External | Reciprocal counter | 0.1 Hz | NC | Yes |
Our QCR with reciprocal counter | Virtex-6 ML605 | GPS 1PPS signal from MediaTek GPS chipset MT3339 | Internal | Reciprocal counter | <0.1 Hz | 188 slices, 733 flip-flops, 527 LUTs, 13 IOBs | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourennane, A.; Tanougast, C.; Diou, C.; Gorse, J. Accurate Multi-Channel QCM Sensor Measurement Enabled by FPGA-Based Embedded System Using GPS. Electronics 2023, 12, 2666. https://doi.org/10.3390/electronics12122666
Bourennane A, Tanougast C, Diou C, Gorse J. Accurate Multi-Channel QCM Sensor Measurement Enabled by FPGA-Based Embedded System Using GPS. Electronics. 2023; 12(12):2666. https://doi.org/10.3390/electronics12122666
Chicago/Turabian StyleBourennane, Adrien, Camel Tanougast, Camille Diou, and Jean Gorse. 2023. "Accurate Multi-Channel QCM Sensor Measurement Enabled by FPGA-Based Embedded System Using GPS" Electronics 12, no. 12: 2666. https://doi.org/10.3390/electronics12122666
APA StyleBourennane, A., Tanougast, C., Diou, C., & Gorse, J. (2023). Accurate Multi-Channel QCM Sensor Measurement Enabled by FPGA-Based Embedded System Using GPS. Electronics, 12(12), 2666. https://doi.org/10.3390/electronics12122666