Deep Learning-Based BoVW–CRNN Model for Lung Tumor Detection in Nano-Segmented CT Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition
2.2. Pre-Processing
2.2.1. Gabor Filter
2.2.2. Modified Color-Based Histogram Equalisation
2.3. Segmentation: GCPSO Method
Algorithm 1. GCPSO |
Initialisation
|
2.4. Feature Extraction
2.4.1. ABC Parameter
- (i)
- Asymmetry Index:
- (ii)
- Border Structure irregularity: calculated by density index, fractal dimension index, edge deflection, and gray transition.
- a.
- Density Index:
- b.
- Fractal dimension Index:
- c.
- Edge deflection:
- d.
- Gray transition: calculates gradient magnitude and direction of an image.
- (iii)
- Diameter: used to calculate less gradient length in terms of nanometer scale.
2.4.2. GLCM Features
2.4.3. Statistical Features
2.5. Classification
2.5.1. BoVW Classifier
2.5.2. CRNN Classifier
2.5.3. Convolution Neural Network (CNN)
3. Results
3.1. Software and Hardware Set-Up
3.2. Performance Measures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, W.J.; Choi, T.S. Automated Pulmonary Nodule Detection System in Computed Tomography Images: A Hierarchical Block Classification Approach. Entropy 2013, 15, 507–523. [Google Scholar] [CrossRef] [Green Version]
- Trial Summary—Learn—NLST—The Cancer Data Access System. Available online: https://biometry.nci.nih.gov/cdas/learn/nlst/trial-summary/ (accessed on 7 January 2022).
- National Lung Screening Trial Research Team. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Xin, J.; Sun, P.; Lin, Z.; Yao, Z.; Gao, X. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class. Comput. Methods Programs Biomed. 2018, 162, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Torre, L.A.; Siegel, R.L.; Jemal, A. Lung Cancer Statistics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–19. [Google Scholar]
- Avinash, S.; Manjunath, K.; Senthil Kumar, S. An improved image processing analysis for the detection of lung cancer using Gabor filters and watershed segmentation technique. In Proceedings of the International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016; Volume 3, pp. 1–6. [Google Scholar]
- Krishnamurthy, S.; Narasimhan, G.; Rengasamy, U. Lung nodule growth measurement and prediction using auto cluster seed K-means morphological segmentation and shape variance analysis. Int. J. Biomed. Eng. Technol. 2017, 24, 53. [Google Scholar] [CrossRef]
- George, A.; Logesh Kumar, S.; Manikandan, K.; Vijayalakshmi, C.; Renuga, R. Medical image using Denoising wavelet transform. Int. J. Circuit Theory Appl. 2016, 9, 3945–3949. [Google Scholar]
- Jin, X.; Zhang, Y.; Jin, Q. Pulmonary Nodule Detection Based on CT Images Using Convolution Neural Network. In Proceedings of the International Symposium on Computational Intelligence And Design (ISCID), Hangzhou, China, 10–11 December 2016. [Google Scholar]
- Soltaninejad, S.; Tajeripour, F. Robust Lung segmentation combining Adaptive concave hull with active contours. In Proceedings of the 11th Intelligent Systems Conference (ICIS), Budapest, Hungary, 9–12 October 2016; p. 69. [Google Scholar]
- Anifah, L.; Haryanto; Harimurti, R.; Permatasari, Z.; Rusimamto, P.W.; Muhamad, A.R. Cancer Lungs Detection on CT Scan Image Using Artificial Neural Network Backpropagation Based Gray Level Co-occurrence Matrices Feature. In Proceedings of the 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Jakarta, Indonesia, 28–29 October 2017; Volume 47. [Google Scholar]
- Malarvel, M.; Sethumadhavan, G.; Bhagi, P.C.R.; Thangavel, S.; Krishnan, A. Region growing based segmentation with automatic seed selection using threshold techniques on X-radiography images. In Proceedings of the 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, India, 15–17 December 2016; pp. 1–4. [Google Scholar]
- Yong, Z.; Jiazheng, Y.; Hongzhe, L.; Qing, L. GrabCut image segmentation algorithm based on structure tensor. J. China Univ. Posts Telecommun. 2017, 24, 38–47. [Google Scholar] [CrossRef]
- Ajin, M.; Mredhula, L.B. Diagnosis Of Interstitial Lung Disease By Pattern Classification. In Proceedings of the International Conference on Advances in Computing & Communications, Kochi, India, 22–24 August 2017; pp. 22–24. [Google Scholar]
- Uzelaltinbulat, S.; Ugur, B. Lung tumor segmentation algorithm. Procedia Comput. Sci. 2017, 120, 140–147. [Google Scholar] [CrossRef]
- Wang, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A.C.A. Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction. Comput. Math. Methods Med. 2016, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhao, Y.; Bai, P. Object Localization improved Grabcut for Lung Parenchyma Segmentation. In Proceedings of the 8th International Congress of Information and Communication Technology, Xiamen, China, 27–28 January 2018; Volume 131, pp. 1311–1317. [Google Scholar]
- Singadkar, G.; Mahajan, A.; Thakur, M.; Talbar, S. An Automatic lung segmentation for the inclusion of juxtapleural nodules and pulmonary vessels using curvature based border correction. J. King Saud Univ.—Comput. Inf. Sci. 2018, 77, 975–987. [Google Scholar] [CrossRef]
- Swierczynskia, P.; Papiez, B.W.; Schnabelb, J.A.; Macdonald, C. A level-set approach to joint image segmentation and registration with application to CT lung imaging. Comput. Med. Imaging Graph. 2018, 65, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Narain Ponraj, D.; Christy, E.; Aneesha, G.; Susmitha, G.; Sharu, M. Analysis of LBP and LOOP Based Textural Feature Extraction for the Classification of CT Lung Images. In Proceedings of the Fourth International Conference on Devices, Circuits and Systems, Coimbatore, India, 16–17 March 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Nithila, E.E.; Kumar, S.S. Segmentation of lung from CT using various active contour models. Biomed. Signal Process. Control 2019, 47, 57–62. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, D.; Khanna, A.; Rebouças Filho, P.P. Evolutionary Algorithms for Automatic Lung Disease Detection. J. Meas. 2019, 140, 42–117. [Google Scholar] [CrossRef]
- Abdel-Massieh, N.H.; Hadhoud, M.M.; Moustafa, K.A. A fully automatic and efficient technique for liver segmentation from abdominal CT images. In Proceedings of the International Conference on Informatics and Systems, Cairo, Egypt, 28–30 March 2010; pp. 1–8. [Google Scholar]
- Armato, S.; Hadjiiski, L.; Tourassi, G.; Drukker, K.; Giger, M.; Li, F.; Redmond, G.; Farahani, K.; Kirby, J.; Clarke, L. Spie-aapm-nci lung nodule classification challenge dataset. Cancer Imaging Arch. 2015, 2, 020103. [Google Scholar] [CrossRef] [Green Version]
- Mathews, A.B.; Jeyakumar, M.K. Quantitative Evaluation of Lung Tumor Detection Applied to Axial MR Images. Int. J. Electr. Electron. Comput. Sci. Eng. 2019, 6, 17–19. [Google Scholar]
- Thiyagarajan, A.; Pandurangan, U. Comparative analysis of classifier Performance on MR brain images. Int. Arab. J. Inf. Technol. 2015, 12, 772–779. [Google Scholar]
- Tisdall, D.; Atkins, M.S. MRI Denoising via Phase Error Estimation; International Society for Optics and Photonics: Washington, DC, USA, 2005; pp. 646–655. [Google Scholar]
- Saba, T. Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. J. Infect. Public Health 2020, 13, 1274–1289. [Google Scholar] [CrossRef]
- Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. Data From LIDC-IDRI [Data set]. Cancer Imaging Arch. 2015. [Google Scholar] [CrossRef]
- Vovk, U.; Pernus, F.; Likar, B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 2007, 26, 405–421. [Google Scholar] [CrossRef]
- Hitosugi, T.; Shimizu, A.; Tamura, M.; Kobatake, H. Development of a liver extraction method using a level set method and its performance evaluation. J. Comput. Aided Diagn. Med. Images 2003, 7, 1–9. [Google Scholar]
- Tajima, T.; Zhang, X.; Kitagawa, T.; Kanematsu, M.; Zhou, X.; Hara, T.; Fujita, H.; Yokoyama, R.; Kondo, H.; Hoshi, H. Computer-aided detection (CAD) of hepatocellular carcinoma on multiphase CT images. In Medical Imaging; SPIE: Washington, DC, USA, 2007. [Google Scholar]
- Asada, N.; Doi, K.; MacMahon, H.; Montner, S.M.; Giger, M.L.; Abe, C.; Wu, Y. Potential usefulness of an artificial neural network for differential diagnosis of interstitial lung disease: Pilot study. Radiology 1990, 177, 857–860. [Google Scholar] [CrossRef]
- Fujita, H.; Katafuchi, T.; Uehara, T.; Nishimura, T. Application of artificial neural network to computer-aided diagnosis of coronary artery disease in myocardial SPECT bull’s-eye images. J. Nucl. Med. 1992, 33, 272–276. [Google Scholar]
- Zhang, W.; Doi, K.; Giger, M.L.; Nishikawa, R.M.; Schmidt, R.A. An improved shiftinvariant artificial neural network for computerised detection of clustered microcalcifications in digital mammograms. Med. Phys. 1996, 23, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-P.; Li, Z.-W.; Yang, J. A parallel SVM training algorithm on the large-scale classification problems. In Proceedings of the International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005. [Google Scholar]
- Mathews, A.B.; Jeyakumar, M.K. Segmentation of Lung Images for Tumor Detection using Color Based k-means Clustering Algorithm. J. Int. Pharm. Res. 2019, 46, 191–197. [Google Scholar]
- Vijay, M. Detection of Lung Cancer Stages on CT scan Images by Using Various Image Processing Techniques. IOSR J. Comput. Eng. 2014, 16, 28–35. [Google Scholar]
- Goncalves, L.; Novo, J.; Campilho, A. Feature definition, analysis and selection for lung nodule classification in chest computerised tomography images. In Proceedings of the 2016 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 27–29 April 2016. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Dhawale, A.P.; Hirekhan, S.R. Real time image processing for biological applications through morphological operations using LabVIEW. Int. J. Eng. Res. Technol. IJERT 2014, 3, 1262–1265. [Google Scholar]
- Han, H.; Li, L.; Han, F.; Song, B.; Moore, W.; Liang, Z. Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantisation scheme. IEEE J. Biomed. Health Inform. 2015, 19, 648–659. [Google Scholar] [CrossRef]
- Kuruvilla, J.; Gunavathi, K. Lung cancer classification using neural networks for CT images. Comput. Methods Programs Biomed. 2014, 113, 202–209. [Google Scholar] [CrossRef]
- Tiwari, A.K. Prediction of lung cancer using image processing techniques: Review. Adv. Comput. Intell. Int. J. ACII 2016, 3, 1–9. [Google Scholar] [CrossRef]
- Subhasri, P. Image Encryption using Advanced Multilevel Encryption. Glob. J. Eng. Sci. Res. 2019, 6, 519–524. [Google Scholar]
- Suzuk, K.; Armato, S.G., III; Li, F.; Sone, S.; Doi, K. Massive training artificial neural network (MTANN) for reduction of false positives in computerised detection of lung nodules in low-dose computed tomography. Med. Phys. 2003, 30, 1602–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javaid, M.; Javid, M.; Rehman, M.Z.U.; Shah, S.I.A. A novel approach to CAD system for the detection of lung nodules in CT images. Comput. Methods Programs Biomed. 2016, 135, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Jiangdian, S.; Caiyun, Y.; Li, F. Lung lesion extraction using a toboggan based growing automatic segmentation approach. IEEE Trans. Med. Imaging 2015, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Gatesmark Publishing: Knoxville, TN, USA, 2004. [Google Scholar]
- Aswathy, S.U.; Abraham, A. A Review on State-of-the-Art Techniques for Image Segmentation and Classification for Brain MR Images. Curr. Med. Imaging 2022, 19, 243–270. [Google Scholar]
- Mathews, A.B.; Jeyakumar, M.K. Automatic Detection of Segmentation and Advanced Classification Algorithm. In Proceedings of the International Conference on Computing Methodologies and Communication, Erode, India, 11–13 March 2020; pp. 358–362. [Google Scholar]
Dataset | Number of Patients | Tumor Slices | Non-Tumor Slices |
---|---|---|---|
Training set | 250 | 4378 | 27987 |
Test Set | 40 | 898 | 3678 |
Dataset | Number of Patients | CMS Imaging | Siemens |
---|---|---|---|
Training set | 250 | 50 | 200 |
Test Set | 40 | 33 | 7 |
Extracted Features of Input Image | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ABC Features | GLCM Features | FOS Features | ||||||||||
Image | Irregularity | Diameter | Asymmetry | Energy | Correlation | Contrast | Homogeneity | Mean | Kurtosis | Standard Deviation | Skewness | Entropy |
1 | 4.156 | 4 | 0.105 | 0.625 | 0.94785 | 0.00852 | 0.99647 | 0.007 | 6.7489 | 0.009 | 2.2356 | 2.789 |
2 | 3.245 | 4 | 0.547 | 0.873 | 0.95287 | 0.00813 | 0.99246 | 0.015 | 7.5632 | 0.0108 | 1.5874 | 2.645 |
3 | 5.475 | 4 | 0.162 | 0.728 | 0.95874 | 0.00792 | 0.99325 | 0.019 | 5.589 | 0.0125 | 1.15569 | 2.312 |
4 | 3.354 | 4 | 0.176 | 0.725 | 0.96586 | 0.00897 | 0.99478 | 0.009 | 4.0145 | 0.0133 | 1.5656 | 2.132 |
5 | 3.247 | 4 | 0.173 | 0.685 | 0.97485 | 0.00587 | 0.99325 | 0.008 | 6.5632 | 0.0192 | 2.5568 | 2.487 |
6 | 6.965 | 4 | 0.205 | 0.525 | 0.99984 | 0.00659 | 0.99214 | 0.056 | 3.3256 | 0.0120 | 1.8965 | 2.646 |
7 | 3.785 | 4 | 0.135 | 0.647 | 0.92588 | 0.00765 | 0.99148 | 0.003 | 7.5265 | 0.0166 | 1.7854 | 2.448 |
8 | 4.458 | 5 | 0.421 | 0.729 | 0.96587 | 0.00832 | 0.99248 | 0.028 | 2.2359 | 0.0129 | 0.85659 | 2.878 |
9 | 4.785 | 4 | 0.225 | 0.828 | 0.97537 | 0.00885 | 0.99148 | 0.078 | 3.5632 | 0.0089 | 0.94587 | 2.548 |
10 | 5.458 | 4 | 0.248 | 0.536 | 0.96965 | 0.00777 | 0.99489 | 0.009 | 6.5986 | 0.0145 | 0.74588 | 2.789 |
Layers | Type | Input | Kernel | Output |
---|---|---|---|---|
Layer 1 | Convolution | 28 × 28 × 1 | 5 × 5 | 24 × 24 × 32 |
Layer 2 | Max Pooling | 24 × 24 × 32 | 2 × 2 | 12 × 12 × 64 |
Layer 3 | Convolution | 12 × 12 × 64 | 5 × 5 | 8 × 8 × 64 |
Layer 4 | Max Pooling | 8 × 8 × 64 | 2 × 2 | 4 × 4 × 64 |
Layer 5 | Fully Connected | 4 × 4 × 64 | 4 × 4 | 512 × 1 |
Layer 6 | Fully Connected | 512 × 1 | 1 × 1 | 2 × 1 |
Layer 7 | SoftMax | 2 × 1 | N/A | Result |
Region | Area (mm2) | Perimeter (mm) | Centroid (mm) | Diameter (mm) |
---|---|---|---|---|
1 | 1680.0 | 148.7 | 125.5 | 46.2 |
2 | 60.0 | 25.7 | 206.6 | 8.7 |
3 | 20 | 12.1 | 199.3 | 5.9 |
Classifier | Accuracy | Sensitivity | Specificity | Precision | PSNR | MSE | F1 Score | Image |
---|---|---|---|---|---|---|---|---|
BoVW | 96.5% | 93% | 100% | 93.5% | 42.278 | 3.474 | 93.5% | Image 1 |
CRNN | 97.5% | 95% | 100% | 95.5% | 69.154 | 2.193 | 89.5% | |
CNN | 95.65% | 94% | 93% | 92.5% | 66.154 | 2.993 | 91.5% | |
BoVW-CRNN | 98.9% | 97% | 99% | 96.5% | 72.675 | 3.675 | 95.5% | |
BoVW | 96.5% | 92.1% | 97% | 93.5% | 43.278 | 3.474 | 93.5% | Image 2 |
CRNN | 91.5% | 93.1% | 98% | 95.5% | 63.154 | 2.183 | 89.5% | |
CNN | 94.65% | 96.25% | 96% | 92.5% | 69.154 | 2.693 | 91.5% | |
BoVW-CRNN | 97.9% | 96.76% | 100% | 96.5% | 75.675 | 3.575 | 95.5% | |
BoVW | 96.5% | 93% | 100% | 93.5% | 42.278 | 3.474 | 93.5% | Image 3 |
CRNN | 91.5% | 93.1% | 98% | 95.5% | 63.154 | 2.183 | 89.5% | |
CNN | 93.65% | 95.25% | 99% | 96.53% | 69.154 | 2.913 | 93.5% | |
BoVW-CRNN | 98.9% | 97% | 99% | 96.5% | 72.675 | 3.675 | 95.5% | |
BoVW | 96.45% | 93.17% | 97% | 93.5% | 43.235 | 3.456 | 92.55% | Image 4 |
CRNN | 93.85% | 96.81% | 98% | 95.5% | 63.873 | 2.985 | 89.59% | |
CNN | 97.85% | 90.25% | 96% | 92.5% | 68.923 | 2.278 | 90.85% | |
BoVW-CRNN | 97.99% | 97.76% | 100% | 96.5% | 75.675 | 3.923 | 97.65% | |
BoVW | 97.5% | 93.1% | 99% | 94.45% | 43.278 | 3.874 | 94.5% | Image 5 |
CRNN | 95.5% | 94.21% | 97% | 95.65% | 63.154 | 2.543 | 91.5% | |
CNN | 93.65% | 95.25% | 99% | 96.53% | 69.154 | 2.913 | 93.5% | |
BoVW-CRNN | 99.9% | 97.76% | 100% | 97.25% | 75.675 | 3.675 | 97.5% |
Classifier | BoVW | CRNN | CNN |
---|---|---|---|
Accuracy | 96.5% | 98.5% | 97.8% |
Error | 3.5% | 1.5% | 2.3% |
Author | Existing Techniques | Accuracy |
---|---|---|
Lin et al. | Fuzzy model Concept | 89.38% |
Diciotti et al. | Log Characteristic Scale method | 85% |
Serena Ricciardi et al. | Principal Component Analysis and SVM | 71.63% |
Suarez et al. | Deep Belief Network and Multiple Classifier | 80% |
Rani et. al. | Nanotechnology Based Detection Scheme & SVM With BOV Classifier | 95% |
Proposed | Nanotechnology Based Detection Scheme With BoVW Classifier | 96.5% |
Proposed | Nanotechnology Based Detection Scheme With CRNN Classifier | 98.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
S. U., A.; P. P., F.R.; Abraham, A.; Stephen, D. Deep Learning-Based BoVW–CRNN Model for Lung Tumor Detection in Nano-Segmented CT Images. Electronics 2023, 12, 14. https://doi.org/10.3390/electronics12010014
S. U. A, P. P. FR, Abraham A, Stephen D. Deep Learning-Based BoVW–CRNN Model for Lung Tumor Detection in Nano-Segmented CT Images. Electronics. 2023; 12(1):14. https://doi.org/10.3390/electronics12010014
Chicago/Turabian StyleS. U., Aswathy, Fathimathul Rajeena P. P., Ajith Abraham, and Divya Stephen. 2023. "Deep Learning-Based BoVW–CRNN Model for Lung Tumor Detection in Nano-Segmented CT Images" Electronics 12, no. 1: 14. https://doi.org/10.3390/electronics12010014
APA StyleS. U., A., P. P., F. R., Abraham, A., & Stephen, D. (2023). Deep Learning-Based BoVW–CRNN Model for Lung Tumor Detection in Nano-Segmented CT Images. Electronics, 12(1), 14. https://doi.org/10.3390/electronics12010014