Jamming and Anti-Jamming Strategies of Mobile Vehicles
Abstract
:1. Introduction
2. Game Description
3. Nash Equilibrium in the Case of the Linear Cost Function
4. Nash Equilibrium in the Case of the Quadratic Cost Function
5. Machine Learning Solution
Algorithm 1 Anti-jamming game algorithm |
1: while (Game is not terminated) do |
2: Recalculate jammer power distribution |
3: Recalculate state of the system using intelligent Driver model |
4: Choose new vehicle transmission channel according to pseudo-random sequence |
5: Retrieve and discretize from memory obtained from the previous iteration |
6: Calculate using exponential decay rule (23) |
7: |
8: Calculate and discretize after action |
9: Add to memory |
10: Retrain algorithm |
11: Save current state of the system |
12: end while |
6. Simulations
6.1. Single-Channel Game with Quadratic Power Function
6.2. Multi-Channel Game with Quadratic Power Function
7. Summary
Author Contributions
Funding
Conflicts of Interest
Appendix A. Proof of Theorem 1
Appendix B. Proof of Theorem 2
References
- Myerson, R.B. Game Theory; Harvard University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press Cambridge: Cambridge, MA, USA, 1998. [Google Scholar]
- Fan, Y.; Xiao, X.; Feng, W. An Anti-Jamming Game in VANET Platoon with Reinforcement Learning. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taichung, Taiwan, 19–21 May 2018; pp. 1–2. [Google Scholar]
- Lu, X.; Xu, D.; Xiao, L.; Wang, L.; Zhuang, W. Anti-jamming communication game for UAV-aided VANETs. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Xiao, L.; Lu, X.; Xu, D.; Tang, Y.; Wang, L.; Zhuang, W. UAV relay in VANETs against smart jamming with reinforcement learning. IEEE Trans. Veh. Technol. 2018, 67, 4087–4097. [Google Scholar] [CrossRef]
- Aumann, R.; Brandenburger, A. Epistemic conditions for Nash equilibrium. Econom. J. Econom. Soc. 1995, 1161–1180. [Google Scholar] [CrossRef]
- Aref, M.A.; Jayaweera, S.K. A novel cognitive anti-jamming stochastic game. In Proceedings of the 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA), Cleveland, OH, USA, 27–28 June 2017; pp. 1–4. [Google Scholar]
- Yao, F.; Jia, L. A Collaborative Multi-agent Reinforcement Learning Anti-jamming Algorithm in Wireless Networks. IEEE Wirel. Commun. Lett. 2019, 8, 1024–1027. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, Y.; Xu, Y.; Yang, Y.; Luo, Y.; Wu, Q.; Liu, X. A Multi-Leader One-Follower Stackelberg Game Approach for Cooperative Anti-Jamming: No Pains, No Gains. IEEE Commun. Lett. 2018, 22, 1680–1683. [Google Scholar] [CrossRef]
- Han, C.; Liu, A.; Wang, H.; Huo, L.; Liang, X. Dynamic Anti-Jamming Coalition for Satellite-Enabled Army IoT: A Distributed Game Approach. IEEE Internet Things J. 2020, 7, 10932–10944. [Google Scholar] [CrossRef]
- Han, C.; Huo, L.; Tong, X.; Wang, H.; Liu, X. Spatial Anti-Jamming Scheme for Internet of Satellites Based on the Deep Reinforcement Learning and Stackelberg Game. IEEE Trans. Veh. Technol. 2020, 69, 5331–5342. [Google Scholar] [CrossRef]
- Treiber, M.; Hennecke, A.; Helbing, D. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 2000, 62, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Jiang, D.; Xu, D.; Zhu, H.; Zhang, Y.; Poor, H.V. Two-dimensional antijamming mobile communication based on reinforcement learning. IEEE Trans. Veh. Technol. 2018, 67, 9499–9512. [Google Scholar] [CrossRef] [Green Version]
- Bowling, M.; Veloso, M. Rational and Convergent Learning in Stochastic Games. In Proceedings of the 17th International Joint Conference on Artificial Intelligence-Volume 2 (IJCAI’01), Seattle, WA, USA, 4–10 August 2001; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2001; pp. 1021–1026. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari With Deep Reinforcement Learning. arXiv 2013, arXiv:1312.5602. [Google Scholar]
- Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
- Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanctot, M.; De Freitas, N. Dueling network architectures for deep reinforcement learning. arXiv 2015, arXiv:1511.06581. [Google Scholar]
- Treiber, M.; Kesting, A. Traffic flow dynamics. In Traffic Flow Dynamics: Data, Models and Simulation; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
Desired speed | 54 km/h |
Time gap T | 1.0 s |
Minimum gap | 2 m |
Acceleration exponent | 4 |
Acceleration a | 1.0 m/s |
Comfortable deceleration b | 1.5 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubosarskii, G.; Primak, S. Jamming and Anti-Jamming Strategies of Mobile Vehicles. Electronics 2021, 10, 2772. https://doi.org/10.3390/electronics10222772
Dubosarskii G, Primak S. Jamming and Anti-Jamming Strategies of Mobile Vehicles. Electronics. 2021; 10(22):2772. https://doi.org/10.3390/electronics10222772
Chicago/Turabian StyleDubosarskii, Gleb, and Serguei Primak. 2021. "Jamming and Anti-Jamming Strategies of Mobile Vehicles" Electronics 10, no. 22: 2772. https://doi.org/10.3390/electronics10222772
APA StyleDubosarskii, G., & Primak, S. (2021). Jamming and Anti-Jamming Strategies of Mobile Vehicles. Electronics, 10(22), 2772. https://doi.org/10.3390/electronics10222772