Electric and Magnetic Design of a Deployable WPT System for Industrial and Defense UAV Applications
Abstract
:1. Introduction
2. The WPT System
2.1. Non-Resonant WPT Systems
2.2. Resonant WPT Systems
3. Charging Pads
3.1. Tx Charging Pad Analysis
3.2. Rx Charging Pad Analysis
3.3. Design Specifications of the Charging Pad
4. Power Inverter Stage
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sullivan, J.M. Evolution or revolution? The rise of UAVs. IEEE Technol. Soc. Mag. 2006, 25, 43–49. [Google Scholar] [CrossRef]
- Qazi, S.; Siddiqui, A.S.; Wagen, A.I. UAV based real time video surveillance over 4G LTE. In Proceedings of the Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 17–19 December 2015; pp. 141–145. [Google Scholar]
- Mahardika, M.; Nugroho, G.; Prasetyo, E.Y. UAV long range surveillance system based on BiQuad antenna for the Ground Control Station. In Proceedings of the IEEE Student Conference on Research and Development (SCOReD), Kuala Lumpur, Malaysia, 13–14 December 2016; pp. 1–5. [Google Scholar]
- Stacy, N.J.S.; Craig, D.W.; Staromlynska, J.; Smith, R.B. The Global Hawk UAV Australian deployment: Imaging radar sensor modifications and employment for maritime surveillance. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Turner, D.; Lucieer, A.; Wallace, L. Direct Georeferencing of Ultrahigh-Resolution UAV Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Lort, M.; Aguasca, A.; Lopez-Martinez, C.; Marin, T.M. Initial Evaluation of SAR capabilities in UAV Multicopter Platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Kumar, R.; Rana, P.S. Self-Healing Neural Model for Stabilization against Failures over Networked UAVs. IEEE Commun. Lett. 2015, 19, 2013–2016. [Google Scholar] [CrossRef]
- Covic, G.A.; Boys, J.T. Modern Trends in Inductive Power Transfer for Transportation Applications. IEEE J. Emerg. Elect. Top. Power Electron. 2014, 1, 28–41. [Google Scholar] [CrossRef]
- Samad, T.; Bay, J.S.; Godbole, D. Network-Centric Systems for Military Operations in Urban Terrain: The Role of UAVs. Proc. IEEE 2007, 95, 92–107. [Google Scholar] [CrossRef]
- Li, K.; Voicu, R.C.; Kanhere, S.S.; Ni, W.; Tovar, E. Energy Efficient Legitimate Wireless Surveillance of UAV Communications. IEEE Trans. Veh. Technol. 2019, 68, 2283–2293. [Google Scholar] [CrossRef]
- Rosu, F.; Badescu, A.; Rusu, B. Analysis and Optimization of an IPT System. In Proceedings of the SPIE Conference ATOM-N, Constanta, Romania, 23–26 August 2018. [Google Scholar]
- Lu, F.; Zhang, H.; Kan, T.; Hoffmann, H.; Mei, Y.; Cai, L.; Mi, C. A high efficiency and compact inductive power transfer system compatible with both 3.3 kW and 7.7 kW receivers. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 3669–3673. [Google Scholar]
- Covic, G.A.; Boys, J.T. Inductive Power Transfer. Proc. IEEE 2013, 101, 1276–1289. [Google Scholar] [CrossRef]
- Ohira, T. What in the world is Q? IEEE Microw. Mag. 2016, 17, 42–49. [Google Scholar] [CrossRef]
- Musavi, F.; Eberle, W. Overview of wireless power transfer technologies for electric vehicle battery charging. IET Power Electron. 2014, 7, 60–66. [Google Scholar] [CrossRef]
- Poon, A.S.Y. A General Solution to Wireless Power Transfer between Two Circular Loop. Prog. Electromagn. Res. 2014, 148, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Aditya, K.; Williamson, S.S. Comparative study of series-series and series-parallel topology for long track EV charging application. In Proceedings of the IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 15–18 June 2014; pp. 1–5. [Google Scholar]
- Sallan, J.; Villa, J.L.; Llombart, A.; Sanz, J.F. Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge. IEEE Trans. Ind. Electron. 2009, 56, 2140–2149. [Google Scholar] [CrossRef]
- ARPANSA. Maximum Exposure Levels to Radiofrequency Fields—3 kHz to 300 GHz; Australian Radiation Protection and Nuclear Safety Agency: Melbourne, Australia, 2002. [Google Scholar]
- Budhia, M.; Covic, G.A.; Boys, J.T. Design and optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems. IEEE Trans. Power Electron. 2011, 26, 3096–3108. [Google Scholar] [CrossRef]
- Rosu, F.; Badescu, A. Patent Pending, A/01188, Submitted in 2019. Available online: https://worldwide.espacenet.com/patent/search/family/068293301/publication/RO133690A0?q=Filip%20Rosu (accessed on 8 September 2021).
- Wheeler, H.A. Simple Inductance Formulas for Radio Coils. Proc. Inst. Radio Eng. 1928, 16, 1398–1400. [Google Scholar] [CrossRef]
- Sampath, J.P.K.; Alphones, A.; Vilathgamuwa, D.M. Coil optimization against misalignment for wireless power transfer. In Proceedings of the IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, New Zealand, 5–8 December 2016; pp. 1–5. [Google Scholar]
- Hirayama, K.; Suetsugu, T.; Kurokawa, F. DC-DC converter based on voltage dividing class E amplifier. In Proceedings of the IEEE International Telecommunications Energy Conference, Broadbeach, Australia, 22–26 October 2017; pp. 535–540. [Google Scholar]
- Hao, H.; Covic, G.A.; Boys, J.T. A Parallel Topology for Inductive Power Transfer Power Supplies. IEEE Trans. Power Electron. 2014, 29, 1140–1151. [Google Scholar] [CrossRef]
- Chen, L.; Nagendra, G.R.; Boys, J.T.; Covic, G.A. Double-Coupled Systems for IPT Roadway Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 37–49. [Google Scholar] [CrossRef]
- Tang, L.-C.; Jeng, S.-L.; Chang, E.-Y.; Chieng, W.-H. Variable-Frequency Pulse Width Modulation Circuits for Resonant Wireless Power Transfer. Energies 2021, 14, 3656. [Google Scholar] [CrossRef]
- Aldhaher, S.; Chi-Kwong Luk, P.; Bati, A.; Whildborne, J.F. Wireless Power Transfer Using Class E Inverter with Saturable DC-Feed Inductor. IEEE Trans. Ind. Appl. 2014, 50, 2710–2718. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Che, W.; Dionigi, M.; Mastri, F.; Mongiardo, M.; Monti, G. Gains Maximization via Impedance Matching Networks for Wireless Power Transfer. Prog. Electromagn. Res. 2019, 164, 135–153. [Google Scholar] [CrossRef] [Green Version]
- Borage, M.; Tiwari, S.; Kotaiah, S. Analysis and design of an LCL-T resonant converter as a constant-current power supply. IEEE Trans. Ind. Electron. 2005, 52, 1547–1554. [Google Scholar] [CrossRef]
- Pantic, Z.; Sanzhong, B.; Lukic, S. ZCS LCC-compensated resonant inverter for inductive-power-transfer application. IEEE Trans. Ind. Electron. 2011, 58, 3500–3510. [Google Scholar] [CrossRef]
- Vu, V.B.; Tran, D.H.; Choi, W. Implementation of the Constant Current and Constant Voltage Charge of Inductive Power Transfer Systems with the Double-SidedLCCCompensation Topology for Electric Vehicle Battery Charge Applications. IEEE Trans. Power Electron. 2018, 33, 7398–7410. [Google Scholar] [CrossRef] [Green Version]
- Tashakor, N.; Khooban, M. An Interleaved Bi-directional AC-DC Converter with Reduced Switches and Reactive Power Control. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 132–136. [Google Scholar] [CrossRef]
Specifications | Tx Coil | Rx Coil | Units |
---|---|---|---|
Inner coil turns | 14 | 5 | turns |
Outer coil turns | 14 | 3 | turns |
Inner coil inner diameter | 300 | 210 | mm |
Outer coil inner diameter | 400 | 475 | mm |
Inner coil self-inductance | 172 | 13.5 | μH |
Outer coil self-inductance | 218 | 13.8 | μH |
Inner/Outer mutual inductance | 110 | 1.75 | μH |
Parallel configuration inductance | 149 | 7.6 | μH |
Parallel unloaded Q at 50 kHz | 200 | 80 | |
Tx–Rx xoupling (k) at 10 cm | 0.29 |
Height (cm) | Coupling | Tx Power (W) | Rx Power (W) | Efficiency (%) |
---|---|---|---|---|
10 | 0.29 | 660 | 625 | 94.7 |
20 | 0.11 | 1840 | 1142 | 62 |
Ref. | Efficiency (%) | Output Power (W) | Frequency (kHz) | Supply Voltage (V) | Inverter Configuration | Charging Distance (cm) | Application |
---|---|---|---|---|---|---|---|
[12] | 95 | 900 | 85 | +360 | H-Brdige | 15 | EV |
[32] | 96.1 | 6600 | 67.5 | +420 | H-Bridge | 20 | EV |
[26] | 95 | 5000 | 20 | +600 | H-bridge | - | EV |
[28] | 80 | 11.75 | 750 | +8 | Class-E PA | 1.25 | Low-Power |
Proposed | 94 | 625 | 50 | +24 | Dual-Channel Class-E PA | 10 | UAV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosu, F.; Badescu, A. Electric and Magnetic Design of a Deployable WPT System for Industrial and Defense UAV Applications. Electronics 2021, 10, 2252. https://doi.org/10.3390/electronics10182252
Rosu F, Badescu A. Electric and Magnetic Design of a Deployable WPT System for Industrial and Defense UAV Applications. Electronics. 2021; 10(18):2252. https://doi.org/10.3390/electronics10182252
Chicago/Turabian StyleRosu, Filip, and Alina Badescu. 2021. "Electric and Magnetic Design of a Deployable WPT System for Industrial and Defense UAV Applications" Electronics 10, no. 18: 2252. https://doi.org/10.3390/electronics10182252
APA StyleRosu, F., & Badescu, A. (2021). Electric and Magnetic Design of a Deployable WPT System for Industrial and Defense UAV Applications. Electronics, 10(18), 2252. https://doi.org/10.3390/electronics10182252