Efficient Holographic Focusing Metasurface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focusing Holographic Metasurface Design
2.2. Amplitude Profile and Role of the Inward Traveling Wave
3. Results
3.1. Full-Wave Simulation Results
3.1.1. High Dielectric Constant Substrate
3.2. Low-Loss Substrate
3.3. Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tofigh, F.; Nourinia, J.; Azarmanesh, M.; Khazaei, K.M. Near-field focused array microstrip planar antenna for medical applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 951–954. [Google Scholar] [CrossRef]
- Bogosanovic, M.; Williamson, A.G. Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection. IEEE Trans. Instrum. Meas. 2007, 56, 2186–2195. [Google Scholar] [CrossRef]
- Stephan, K.; Mead, J.; Pozar, D.; Wang, L.; Pearce, J. A near field focused microstrip array for a radiometric temperature sensor. IEEE Trans. Antennas Propag. 2007, 55, 1199–1203. [Google Scholar] [CrossRef]
- Loane, J.; Lee, S.-W. Gain optimization of a near-field focusing array for hyperthermia applications. IEEE Trans. Microw. Theory Tech. 1989, 37, 1629–1635. [Google Scholar] [CrossRef]
- Ho, J.S.; Yeh, A.J.; Neofytou, E.; Kim, S.; Tanabe, Y.; Patlolla, B.; Beygui, R.E.; Poon, A.S. Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. USA 2014, 111, 7974–7979. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Ho, J.S.; Poon, A.S. Midfield wireless powering of subwavelength autonomous devices. Phys. Rev. Lett. 2013, 110, 203905. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, D.R.; Tanabe, Y.; Weng, D.; Ma, A.; Hsu, S.; Liao, S.-Y.; Zhen, Z.; Zhu, Z.-Y.; Sun, C.; Dong, Z.; et al. Conformal phased surfaces for wireless powering of bioelectronic microdevices. Nat. Biomed. Eng. 2017, 1, 0043. [Google Scholar] [CrossRef]
- Buffi, A.; Nepa, P.; Manara, G. Design criteria for near-field-focused planar arrays. IEEE Antennas Propag. Mag. 2012, 54, 40–50. [Google Scholar] [CrossRef]
- Borgiotti, G.V. Maximum power transfer between two planar apertures in the fresnel zone. IEEE Trans. Antennas Propag. 1966, 14, 158–163. [Google Scholar] [CrossRef]
- Shan, L.; Geyi, W. Optimal design of focused antenna arrays. IEEE Trans. Antennas Propag. 2014, 62, 5565–5571. [Google Scholar] [CrossRef]
- Massa, A.; Oliveri, G.; Viani, F.; Rocca, P. Array designs for long-distance wireless power transmission: State-of-the-art and innovative solutions. Proc. IEEE 2013, 101, 1464–1481. [Google Scholar] [CrossRef] [Green Version]
- Gowda, V.R.; Yurduseven, O.; Lipworth, G.; Zupan, T.; Reynolds, M.S.; Smith, D.R. Wireless power transfer in the radiative near field. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1865–1868. [Google Scholar] [CrossRef]
- Smith, D.R.; Gowda, V.R.; Yurduseven, O.; Larouche, S.; Lipworth, G.; Urzhumov, Y.; Reynolds, M.S. An analysis of beamed wireless power transfer in the fresnel zone using a dynamic, metasurface aperture. J. Appl. Phys. 2017, 121, 014901. [Google Scholar] [CrossRef]
- Siragusa, R.; Lemaître-Auger, P.; Tedjini, S. Tunable near-field focused circular phase-array antenna for 5.8-ghz rfid applications. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 33–36. [Google Scholar] [CrossRef]
- Khang, S.-T.; Lee, D.-J.; Hwang, I.-J.; Yeo, T.-D.; Yu, J.-W. Microwave power transfer with optimal number of rectenna arrays for midrange applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 155–159. [Google Scholar] [CrossRef]
- Karimkashi, S.; Kishk, A.A. Focused microstrip array antenna using a dolph-chebyshev near-field design. IEEE Trans. Antennas Propag. 2009, 57, 3813–3820. [Google Scholar] [CrossRef]
- Karimkashi, S.; Kishk, A.A. Focusing properties of fresnel zone plate lens antennas in the near-field region. IEEE Trans. Antennas Propag. 2011, 59, 1481–1487. [Google Scholar] [CrossRef]
- Gomez-Tornero, J.L.; Quesada-Pereira, F.; Alvarez-Melcon, A.; Goussetis, G.; Weily, A.R.; Guo, Y.J. Frequency steerable two dimensional focusing using rectilinear leaky-wave lenses. IEEE Trans. Antennas Propag. 2011, 59, 407–415. [Google Scholar] [CrossRef]
- Grbic, A.; Merlin, R.; Thomas, E.M.; Imani, M.F. Near-field plates: Metamaterial surfaces/arrays for subwavelength focusing and probing. Proc. IEEE 2011, 99, 1806–1815. [Google Scholar] [CrossRef]
- Blanco, D.; Gómez-Tornero, J.L.; Rajo-Iglesias, E.; Llombart, N. Radially polarized annular-slot leaky-wave antenna for three-dimensional near-field microwave focusing. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 583–586. [Google Scholar] [CrossRef]
- Blanco, D.; Gomez-Tornero, J.L.; Rajo-Iglesias, E.; Llombart, N. Holographic surface leaky-wave lenses with circularly-polarized focused near-fields part ii: Experiments and description of frequency steering of focal length. IEEE Trans. Antennas Propag. 2013, 61, 3486–3494. [Google Scholar] [CrossRef]
- Ettorre, M.; Casaletti, M.; Valerio, G.; Sauleau, R.; Le Coq, L.; Pavone, S.C.; Albani, M. On the near-field shaping and focusing capability of a radial line slot array. IEEE Trans Antennas Propag. 2014, 62, 1991–1999. [Google Scholar] [CrossRef] [Green Version]
- Ettorre, M.; Pavone, S.C.; Casaletti, M.; Albani, M. Experimental validation of bessel beam generation using an inward hankel aperture distribution. IEEE Trans. Antennas Propag. 2015, 63, 2539–2544. [Google Scholar] [CrossRef] [Green Version]
- Imani, M.F.; Grbic, A. A unidirectional subwavelength focusing near-field plate. J. Appl. Phys. 2014, 115, 044904. [Google Scholar] [CrossRef]
- Imani, M.F.; Grbic, A. Unidirectional wireless power transfer using near-field plates. J. Appl. Phys. 2015, 117, 184903. [Google Scholar] [CrossRef]
- Iliopoulos, I.; Casaletti, M.; Sauleau, R.; Pouliguen, P.; Potier, P.; Ettorre, M. 3-d shaping of a focused aperture in the near field. IEEE Trans. Antennas Propag. 2016, 64, 5262–5271. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Comite, D.; Boesso, A.; Baccarelli, P.; Burghignoli, P.; Galli, A. Focusing leaky waves: A class of electromagnetic localized waves with complex spectra. Phys. Rev. Appl. 2018, 9, 054005. [Google Scholar] [CrossRef]
- Salem, M.A.; Kamel, A.H.; Niver, E. Microwave bessel beams generation using guided modes. IEEE Trans. Antennas Propag. 2011, 59, 2241–2247. [Google Scholar] [CrossRef]
- Ettorre, M.; Pavone, S.C.; Casaletti, M.; Albani, M.; Mazzinghi, A.; Freni, A. Near-field focusing by non-diffracting bessel beams. In Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications; Springer: Cham, Switzerland, 2018; pp. 243–288. [Google Scholar]
- Gowda, V.R.; Imani, M.F.; Sleasman, T.; Yurduseven, O.; Smith, D.R. Focusing microwaves in the fresnel zone with a cavity-backed holographic metasurface. IEEE Access 2018, 6, 12815–12824. [Google Scholar] [CrossRef]
- Yu, S.; Liu, H.; Li, L. Design of near-field focused metasurface for high efficient wireless power transfer with multi-focus characteristics. IEEE Trans. Ind. Electron. 2018, 66, 3993–4002. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Maci, S.; Minatti, G.; Casaletti, M.; Bosiljevac, M. Metasurfing: Addressing waves on impenetrable metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1499–1502. [Google Scholar] [CrossRef]
- Johnson, M.C.; Brunton, S.L.; Kundtz, N.B.; Kutz, J.N. Sidelobe canceling for reconfigurable holographic metamaterial antenna. IEEE Trans. Antennas Propag. 2015, 63, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R.; Yurduseven, O.; Mancera, L.P.; Bowen, P.; Kundtz, N.B. Analysis of a waveguide-fed metasurface antenna. Phys. Rev. Appl. 2017, 8, 054048. [Google Scholar] [CrossRef] [Green Version]
- Nasari, H.; Dupré, M.; Kanté, B. Efficient design of random metasurfaces. Opt. Lett. 2018, 43, 5829–5832. [Google Scholar] [CrossRef]
- Imani, M.F.; Sleasman, T.; Smith, D.R. Two-dimensional dynamic metasurface apertures for computational microwave imaging. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2299–2303. [Google Scholar] [CrossRef]
- Ando, M.; Sakurai, K.; Goto, N.; Arimura, K.; Ito, Y. A radial line slot antenna for 12 ghz satellite tv reception. IEEE Trans. Antennas Propag. 1985, 33, 1347–1353. [Google Scholar] [CrossRef]
- Ando, M.; Numata, T.; Takada, J.-I.; Goto, N. A linearly polarized radial line slot antenna. IEEE Trans. Antennas Propag. 1988, 36, 1675–1680. [Google Scholar] [CrossRef]
- Imran, M.; Tharek, A. Radial line slot antenna development for outdoor point to point application at 5.8 ghz band. In Proceedings of the RF and Microwave Conference (IEEE Cat. No.04EX924), Selangor, Malaysia, 5–6 October 2004; pp. 103–105. [Google Scholar]
- Akiyama, A.; Yamamoto, T.; Ando, M.; Goto, N.; Takeda, E. Design of radial line slot antennas for millimeter wave wireless lan. In Proceedings of the IEEE Antennas and Propagation Society International Symposium 1997. Digest, Montreal, QC, Canada, 13–18 July 1997; pp. 2516–2519. [Google Scholar]
- Yamamoto, T.; Chien, N.T.; Ando, M.; Goto, N.; Hirayama, M.; Ohmi, T. Design of radial line slot antennas at 8.3 ghz for large area uniform plasma generation. Jpn. J. Appl. Phys. 1999, 38, 2082. [Google Scholar] [CrossRef]
- Takahashi, M.; Takada, J.-I.; Ando, M.; Goto, N. A slot design for uniform aperture field distribution in single-layered radial line slot antennas. IEEE Trans. Antennas Propag. 1991, 39, 954–959. [Google Scholar] [CrossRef]
- Xu, X.; Mori, D.; Mazzinghi, A.; Freni, A.; Hirokawa, J.; Ando, M.; Araki, K. A 60-ghz rlsa fed by butler matrix carrying three oam modes. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 1445–1446. [Google Scholar]
- Mazzinghi, A.; Balma, M.; Devona, D.; Guarnieri, G.; Mauriello, G.; Albani, M.; Freni, A. Large depth of field pseudo-Bessel beam generation with a RLSA antenna. IEEE Trans. Antennas Propag. 2014, 62, 3911–3919. [Google Scholar] [CrossRef]
- Albani, M.; Mazzinghi, A.; Freni, A. Automatic design of cp-rlsa antennas. IEEE Trans. Antennas Propag. 2012, 60, 5538–5547. [Google Scholar] [CrossRef]
- Herranz-Herruzo, J.I.; Valero-Nogueira, A.; Ferrando-Bataller, M. Optimization technique for linearly polarized radial-line slot-array antennas using the multiple sweep method of moments. IEEE Trans. Antennas Propag. 2004, 52, 1015–1023. [Google Scholar] [CrossRef]
- Herranz, J.I.; Valero-Nogueira, A.; Vico, F.; Rodrigo, V.M. Optimization of beam-tilted linearly polarized radial-line slot-array antennas. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 1165–1168. [Google Scholar] [CrossRef]
- Ueda, H.; Hirokawa, J.; Ando, M.; Albani, M. A coaxial feeder with two pairs of parasitic pins for realizing rotationally symmetric aperture illumination in spiral array radial line slot antennas. IEICE Trans. Commun. 2010, 93, 2554–2561. [Google Scholar] [CrossRef]
- Mazzinghi, A.; Albani, M.; Freni, A. Near field focusing for security applications: Design and optimization of rlsa antennas. In Proceedings of the IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Palm Beach, Aruba, 3–9 August 2014; pp. 742–745. [Google Scholar]
- Davis, P.W.; Bialkowski, M.E. Linearly polarized radial-line slot-array antennas with improved return-loss performance. IEEE Antennas Propag. Mag. 1999, 41, 52–61. [Google Scholar] [CrossRef]
- Bray, M. A spiral radial line slot array antenna with metallic standoffs for deep space missions. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 621–622. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Balanis, C.A. Advanced Engineering Electromagnetics; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Pulido-Mancera, L.M.; Zvolensky, T.; Imani, M.F.; Bowen, P.T.; Valayil, M.; Smith, D.R. Discrete dipole approximation applied to highly directive slotted waveguide antennas. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1823–1826. [Google Scholar] [CrossRef]
- Pulido-Mancera, L.; Bowen, P.T.; Imani, M.F.; Kundtz, N.; Smith, D. Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling. Phys. Rev. B 2017, 96, 235402. [Google Scholar] [CrossRef] [Green Version]
- Imani, M.F.; Sleasman, T.; Gollub, J.N.; Smith, D.R. Analytical modeling of printed metasurface cavities for computational imaging. J. Appl. Phys. 2016, 120, 144903. [Google Scholar] [CrossRef]
- Li, Y.; Wolf, E. Focal shift in focused truncated gaussian beams. Opt. Commun. 1982, 42, 151–156. [Google Scholar] [CrossRef]
- Martínez-Corral, M.; Climent, V. Focal switch: A new effect in low-fresnel-number systems. Appl. Opt. 1996, 35, 24–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, J. Properties of focused apertures in the fresnel region. IRE Trans. Antennas Propag. 1962, 10, 399–408. [Google Scholar] [CrossRef]
- Saeidi, C.; van der Weide, D. A figure of merit for focusing metasurfaces. Appl. Phys. Lett. 2015, 106, 113110. [Google Scholar] [CrossRef]
- Yaghjian, A. An overview of near-field antenna measurements. IEEE Trans. Antennas Propag. 1986, 34, 30–45. [Google Scholar] [CrossRef] [Green Version]
Phased Array [8,12] | FZP [16,17] | LW Antennas [18,20] | RLSA [38,39,40,41,42,51] | Current Manuscript | |
---|---|---|---|---|---|
Advantages | * Fabrication easy * Near perfect beam forming with low SLL | * Easy to design * High Gain | * Fabrication easy * Planar | * Easy to design * Planar * Directive * Less weight | * Planar Low cost * Fabrication easy * Simple feed * Less weight |
Disadvantages | * Complex feed networks * High cost * Power hungry | * Large form factor * Mechanical motion required for a dynamic aperture | * Focus changes with frequency * Longitudinal component of focus complicates receiver design | * Spiral feed complicates dynamic aperture design | * Slots used as radiating elements (hard to design dynamic aperture) |
Co-Pol | Cross-Pol | Co-Pol | Cross-Pol | |
---|---|---|---|---|
Single Slot | ||||
Slot Pair |
(Case 1) | (Case 2) | ||
---|---|---|---|
Slot length (mm) |
Uniform [30] | Tapered [30] | Uniform | Uniform | |
---|---|---|---|---|
(Single Slot) | (Single Slot) | (Slot Pair) | (Slot Pair) | |
(%) | ||||
(%) | ||||
(%) | ||||
SLL (dB) |
Gaussian Optics | CST | Experiments | |
---|---|---|---|
cm | cm | cm | cm |
cm | cm | cm | cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gowda, V.R.; Imani, M.F.; Sleasman, T.; Smith, D.R. Efficient Holographic Focusing Metasurface. Electronics 2021, 10, 1837. https://doi.org/10.3390/electronics10151837
Gowda VR, Imani MF, Sleasman T, Smith DR. Efficient Holographic Focusing Metasurface. Electronics. 2021; 10(15):1837. https://doi.org/10.3390/electronics10151837
Chicago/Turabian StyleGowda, Vinay R., Mohammadreza F. Imani, Timothy Sleasman, and David R. Smith. 2021. "Efficient Holographic Focusing Metasurface" Electronics 10, no. 15: 1837. https://doi.org/10.3390/electronics10151837
APA StyleGowda, V. R., Imani, M. F., Sleasman, T., & Smith, D. R. (2021). Efficient Holographic Focusing Metasurface. Electronics, 10(15), 1837. https://doi.org/10.3390/electronics10151837