Design of Low Cross-Polarization Tri-Reflector CATR with Standard Quadric Surfaces Working in Terahertz
Abstract
:1. Introduction
2. Design of a Tri-Reflector CATR
2.1. Equivalent Paraboloid Method and Cross-Polarization Elimination Conditions
2.2. The Structure of Low Cross-Polarization Tri-Reflector CATR with Standard Quadric Surfaces
- When sub-reflector one is an elliptic surface, that is: P1 < 0, then l > 0 can be obtained;
- When sub-reflector two is a hyperbolic surface, that is: P2 < 0, and because α < 0, β > 0, θ0 > 0, then l/L0 > Max (X0, 0), and then θ0 > β, l/L0 > X0 or 0 < θ0 < β can also be obtained.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Doyle, D.; Pilbratt, G.; Tauber, J. The Herschel and Planck Space Telescopes. Proc. IEEE 2009, 97, 1403–1411. [Google Scholar] [CrossRef]
- Rolo, L.F.; Paquay, M.H.; Daddato, R.J.; Parian, J.A.; Doyle, D.; De Maagt, P. Terahertz Antenna Technology and Verification: Herschel and Planck—A Review. IEEE Trans. Microw. Theory Tech. 2010, 58, 2046–2063. [Google Scholar] [CrossRef]
- Cooper, K.B.; Dengler, R.J.; Llombart, N.; Bryllert, T.; Chattopadhyay, G.; Schlecht, E.; Gill, J.; Lee, C.; Skalare, A.; Mehdi, I.; et al. Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar. IEEE Trans. Microw. Theory Tech. 2008, 56, 2771–2778. [Google Scholar] [CrossRef] [Green Version]
- Harmon, S.A.; Cheville, R.A. Part-per-million gas detection from long-baseline THz spectroscopy. Appl. Phys. Lett. 2004, 85, 2128. [Google Scholar] [CrossRef] [Green Version]
- Tuovinen, J. Method for testing reflector antennas at THz frequencies. IEEE Antennas Propag. Mag. 1993, 35, 7–13. [Google Scholar] [CrossRef]
- Newell, A. Error analysis techniques for planar near-field measurements. IEEE Trans. Antennas Propag. 1988, 36, 754–768. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, R.; Padovan, G.; De Maagt, P.; Lamarre, D.; Costes, L. A 5-frequency millimeter wave antenna for a spaceborne limb sounding instrument. IEEE Trans. Antennas Propag. 2001, 49, 703–714. [Google Scholar] [CrossRef]
- Pistorius, C.; Clerici, G.; Burnside, W. A dual chamber Gregorian subreflector system for compact range applications. IEEE Trans. Antennas Propag. 1989, 37, 305–313. [Google Scholar] [CrossRef]
- Menzel, W.; Hunder, B. Compact range for millimetre-wave frequencies using a dielectric lens. Electron. Lett. 1984, 20, 768. [Google Scholar] [CrossRef]
- Säily, J.; Ala-Laurinaho, J.; Häkli, J.; Tuovinen, J.; Lehto, A.; Räisänen, A. Test results of 310 GHz hologram compact antenna test range. Electron. Lett. 2000, 36, 111. [Google Scholar] [CrossRef]
- Lonnqvist, A.; Koskinen, T.; Hakli, J.; Saily, J.; Ala-Laurinaho, J.; Mallat, J.; Viikari, V.; Tuovinen, J.; Raisanen, A. Hologram-based compact range for submillimeter-wave antenna testing. IEEE Trans. Antennas Propag. 2005, 53, 3151–3159. [Google Scholar] [CrossRef]
- Zhigang, L.; Dong, C. Research on improving CATR system design in test area. In Proceedings of the 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 20–23 September 2020; pp. 1–3. [Google Scholar]
- Parini, C.G.; Olver, A.D.; M, P.; Prior, C.J. The design, construction and use of a millimetrewave compact antenna test range. In Proceedings of the 1989 Sixth International Conference on Antennas and Propagation, ICAP 89 (Conf. Publ. No.301), Coventry, UK, 4–7 April 1989. [Google Scholar]
- Shields, M. The compact RCS/antenna range at MIT Lincoln Laboratory. In Proceedings of the 2009 European Conference on Antennas and Propagation, Berlin, Germany, 23–27 March 2009; pp. 939–943. [Google Scholar]
- Le Coq, L.; Fuchs, B.; Kozan, T.; Burgos, S.; Iversen, P.O. IETR millimeter-wave Compact Antenna Test Range implementation and validation. In Proceedings of the 2015 9th European Conference on Antennas Propagation, Lisbon, Portugal, 13–17 April 2015. [Google Scholar]
- Smith, S.L.; Archer, J.W.; Timms, G.P.; Smart, K.W.; Barker, S.J.; Hay, S.G.; Granet, C. A Millimeter-Wave Antenna Amplitude and Phase Measurement System. IEEE Trans. Antennas Propag. 2012, 60, 1744–1757. [Google Scholar] [CrossRef]
- Hartmann, J.; Fasold, D. Analysis and Performance Verification of Advanced Compensated Compact Ranges. In Proceedings of the 1999 29th European Microwave Conference, Munich, Germany, 5–7 October 1999. [Google Scholar] [CrossRef]
- Schmidt, C.H.; Steiner, H.J.; Klett, S.; Garcia, H.; Forma, G. Quiet Zone Extension of an existing Compensated Compact Range 75/60. In Proceedings of the 2015 9th European Conference on Antennas Propagation, Lisbon, Portugal, 13–17 April 2015; pp. 12–16. [Google Scholar]
- Lu, Z.; Chen, X.; Yao, Y.; Liu, X.; Yang, C.; Wang, H.; Yu, J. Modeling and simulation of a tri-reflector CATR system at 300GHz. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 1–3 July 2015. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Yu, J.; Yao, Y.; Yang, C.; Wang, H.; Liu, H.; Lu, Z.; Wylde, R. A tri-reflector compact antenna test range operating in the THz range. In Proceedings of the 2015 9th European Conference on Antennas Propagation, Lisbon, Portugal, 13–17 April 2015; pp. 3–5. [Google Scholar]
- Yang, C.; Yu, J.; Yao, Y.; Liu, X.; Chen, X. Numerical synthesis of tri-reflector CATR with high cross-polarisation isolation. Electron. Lett. 2016, 52, 1286–1288. [Google Scholar] [CrossRef]
- Furuno, T.; Urasaki, S.; Katagi, T.; Furuno, T.; Urasaki, S.; Katagi, T. Tri-reflector antennas eliminating cross-polarized component based on beam-mode analysis. Electron. Commun. Jpn. (Part I Commun.) 1996, 79, 55–64. [Google Scholar] [CrossRef]
- Granet, C. Designing classical Dragonian offset dual-reflector antennas from combinations of prescribed geometric parameters. IEEE Antennas Propag. Mag. 2001, 43, 100–107. [Google Scholar] [CrossRef]
- Mizugutch, Y.; Akagawa, M.; Yokoi, H. Offset dual reflector antenna. In Proceedings of the 1976 Antennas and Propagation Society International Symposium, Amherst, MA, USA, 11–15 October 1976; Volume 14, pp. 2–5. [Google Scholar]
- Barkeshli, K.; Mazlumi, F.; Azadegan, R. The synthesis of offset dual reflector antennas by genetic algorithms. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), San Antonio, TX, USA, 16–21 June 2002; Volume 1, pp. 670–673. [Google Scholar]
- Brown, K.; Lee, Y.-H.; Prata, A. A systematic design procedure for classical offset dual reflector antennas with optimal electrical performance. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Ann Arbor, MI, USA, 28 June–2 July 1993. [Google Scholar] [CrossRef]
- Rusch, W.V.; Prata, A.L.U.I.Z.; Rahmat-Samii, Y.; Shore, R.A. Derivation and application of the equivalent paraboloid for classical offset Cassegrain and Gregorian antennas. IEEE Trans. Antennas Propag. 1990, 38, 1141–1149. [Google Scholar] [CrossRef]
- Dragone, C. Offset Multireflector Antennas with Perfect Pattern Symmetry and Polarization Discrimination. Bell Syst. Tech. J. 1978, 57, 2663–2684. [Google Scholar] [CrossRef]
- Urasaki, S.; Makino, S.; Katagi, T. Tri-reflector antennas with no cross-polarized component. Electron. Commun. Jpn. (Part I Commun.) 1985, 68, 85–92. [Google Scholar] [CrossRef]
- Yao, Y.; Cao, Y.; Liu, Y.; Yu, J.; Chen, X. Design and implementation of THz ultra Gaussian corrugated feed horn. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar]
- Yang, C.; Yu, J.; Yao, Y.; Liu, X.; Chen, X. Novel Corrugated Matched Feed for Cross-Polar Cancellation in Tri-Reflector Compact Range. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1003–1006. [Google Scholar] [CrossRef]
- Wang, J.; Yao, Y.; Liu, X.; Qi, L.; Chen, Z.; Yu, J.; Chen, X. Enhancing reflector aperture usage efficiency using a coaxial cavity antenna: Application to compact antenna test range. In Proceedings of the 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Liverpool, UK, 11–13 September 2017; pp. 1–3. [Google Scholar] [CrossRef]
Parameter | θ0 (°) | α (°) | β (°) | L0 (m) | L1 (m) | L2 (m) | l (m) | d (m) |
---|---|---|---|---|---|---|---|---|
value | 90 | −20.3 | 91.6 | 0.6 | 0.9 | 3.25 | 59.7 | 4.0 |
Frequency (GHz) | Co-Polar Amplitude Ripple (dB) | Co-Polar Phase Ripple (°) | Cross-Polar Isolation (dB) |
---|---|---|---|
100 | 1.75 | 12.84 | 37.12 |
200 | 1.61 | 10.88 | 39.87 |
300 | 1.54 | 9.55 | 40.36 |
400 | 1.34 | 9.06 | 41.64 |
500 | 1.16 | 7.42 | 42.18 |
Ref. | Upper Frequency Limit (GHz) | QZ Usage (%) | QZ Diameter (m) | Size of Sub-Reflectors (m) | Cross-Polar Isolation (dB) |
---|---|---|---|---|---|
[13] | 100 | 30 | 0.9 | 20 | |
[15] | 110 | 50 | 0.6 | 25 | |
[17] | 200 | 66 | 5 | 5.6 | 30 |
[18] | 200 | 75 | 6 | 6.1 | 30 |
[20] | 325 | 70 | 0.7 | 0.3 and 0.32 | 30 |
Proposed | 500 | 75 | 2.25 | 0.27 and 0.25 | 37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yao, Y.; Chen, T.; Yu, J.; Chen, X. Design of Low Cross-Polarization Tri-Reflector CATR with Standard Quadric Surfaces Working in Terahertz. Electronics 2021, 10, 1727. https://doi.org/10.3390/electronics10141727
Li Z, Yao Y, Chen T, Yu J, Chen X. Design of Low Cross-Polarization Tri-Reflector CATR with Standard Quadric Surfaces Working in Terahertz. Electronics. 2021; 10(14):1727. https://doi.org/10.3390/electronics10141727
Chicago/Turabian StyleLi, Zhi, Yuan Yao, Tianyang Chen, Junsheng Yu, and Xiaodong Chen. 2021. "Design of Low Cross-Polarization Tri-Reflector CATR with Standard Quadric Surfaces Working in Terahertz" Electronics 10, no. 14: 1727. https://doi.org/10.3390/electronics10141727
APA StyleLi, Z., Yao, Y., Chen, T., Yu, J., & Chen, X. (2021). Design of Low Cross-Polarization Tri-Reflector CATR with Standard Quadric Surfaces Working in Terahertz. Electronics, 10(14), 1727. https://doi.org/10.3390/electronics10141727