A 56–161 GHz Common-Emitter Amplifier with 16.5 dB Gain Based on InP DHBT Process
Abstract
1. Introduction
2. InP DHBT Technology
2.1. Parasitic Substrate Mode Suppression
2.2. Equivalent Circuit Model of Capacitor
2.3. Equivalent Circuit Model of Transistor
3. Amplifier Design
4. On-Wafer Measurement Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nguyen, D.P.; Stameroff, A.N.; Pham, A. A 1.5–88 GHz 19.5 dBm output power triple stacked HBT InP distributed amplifier. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honolulu, HI, USA, 4–9 June 2017; pp. 20–23. [Google Scholar]
- Killeen, N.S.; Nguyen, D.P.; Stameroff, A.N.; Pham, A.V.; Hurst, P.J. Design of a Wideband Bandpass Stacked HBT Distributed Amplifier in InP. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Firenze, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Yoon, S.; Lee, I.; Urteaga, M.; Kim, M.; Jeon, S. A Fully-Integrated 40–222 GHz InP HBT Distributed Amplifier. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 460–462. [Google Scholar] [CrossRef]
- Shivan, T.; Hossain, M.; Stoppel, I.D.; Weimann, N.; Schulz, S.; Doerner, R.; Krozer, V.; Heinrich, W. An Ultra-broadband Low-Noise Distributed Amplifier in InP DHBT Technology. In Proceedings of the 2018 48th European Microwave Conference (EuMC), London, UK, 23–27 September 2018; pp. 1209–1212. [Google Scholar]
- Shivan, T.; Hossain, M.; Doerner, R.; Johansen, T.K.; Yacoub, H.; Boppel, S.; Heinrich, W.; Krozer, V. Performance Analysis of a Low-Noise, Highly Linear Distributed Amplifier in 500-nm InP/InGaAs DHBT Technology. IEEE Trans. Microw. Theory Tech. 2019, 67, 5139–5147. [Google Scholar] [CrossRef]
- Shivan, T.; Weimann, N.; Hossain, M.; Stoppel, D.; Boppel, S.; Ostinelli, O.; Doerner, R.; Bolognesi, C.R.; Krozer, V.; Heinrich, W. A Highly Efficient Ultrawideband Traveling-Wave Amplifier in InP DHBT Technology. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 1029–1031. [Google Scholar] [CrossRef]
- Griffith, Z.; Urteaga, M.; Rowell, P. A Compact 140-GHz, 150-mW High-Gain Power Amplifier MMIC in 250-nm InP HBT. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 282–284. [Google Scholar] [CrossRef]
- Griffith, Z.; Urteaga, M.; Rowell, P. A 140-GHz 0.25-W PA and a 55-135 GHz 115-135 mW PA, High-Gain, Broadband Power Amplifier MMICs in 250-nm InP HBT. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 1245–1248. [Google Scholar]
- Griffith, Z.; Urteaga, M.; Rowell, P.; Tran, L.; Brar, B. 50–250 GHz High-Gain Power Amplifier MMICs in 250-nm InP HBT. In Proceedings of the 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), Monterey, CA, USA, 3–6 November 2019; pp. 1–6. [Google Scholar]
- Wei, C.; Jin, Z.; Su, Y.; Liu, X.; Xu, A.; Qi, M. Composite-Collector InGaAs/InP Double Heterostructure Bipolar Transistors with Current-Gain Cutoff Frequency of 242 GHz. Chin. Phys. Lett. 2009, 26, 038502. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, T. 0.5 μm InP DHBT technology for 100 GHz + mixed signal integrated circuits. J. Infrared Millim. Waves 2017, 36, 167–172. [Google Scholar]
- Niu, B. 0.5 μm InP /InGaAs DHBT for ultra high speed digital integrated circuit. J. Infrared Millim. Waves 2016, 35, 263–266. [Google Scholar]
- Li, O.; Zhang, Y.; Zhang, T.; Wang, L.; Xu, R.; Sun, Y.; Cheng, W.; Wang, Y.; Niu, B. 140 GHz power amplifier based on 0.5 µm composite collector InP DHBT. IEICE Electron. Express 2017, 14, 20170191. [Google Scholar] [CrossRef][Green Version]
- Yanfei, H.; Weihua, Y.; Yan, S.; Wei, C. Design of Broadband Amplifier Based on InP DHBT. In Proceedings of the 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 29–31 July 2020; pp. 1–3. [Google Scholar]
- Eriksson, K.; Gunnarsson, S.E.; Nilsson, P.; Zirath, H. Suppression of Parasitic Substrate Modes in Multilayer Integrated Circuits. IEEE Trans. Electromagn. Compat. 2015, 57, 591–594. [Google Scholar] [CrossRef]
- Deal, W.R.; Leong, K.; Zamora, A.; Radisic, V.; Mei, X.B. Recent progress in scaling InP HEMT TMIC technology to 850 GHz. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS), Tampa, FL, USA, 1–6 June 2014; pp. 1–3. [Google Scholar]
- Chen, Y.; Zhang, Y.; Xu, Y.; Sun, Y.; Cheng, W.; Lu, H.; Xiao, F.; Xu, R. Investigation of Terahertz 3D EM Simulation on Device Modeling and A New InP HBT Dispersive Inter-Electrode Impedance Extraction Method. IEEE Access 2018, 6, 45772–45781. [Google Scholar] [CrossRef]
- Iwamoto, M.; Root, D.E.; Scott, J.B.; Cognata, A.; Asbeck, P.M.; Hughes, B.; Avanzo, D.C.D. Large-signal HBT model with improved collector transit time formulation for GaAs and InP technologies. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Fort Worth, TX, USA, 8–13 June 2003; pp. 635–638. [Google Scholar]
Rbi (Ω) | Re (Ω) | Rc (Ω) | Rbe (Ω) | Cbci (fF) | Rbci (kΩ) | Gm0 (mS) | τ (pS) | Cbe (fF) |
42 | 3 | 42.7 | 67 | 2.4 | 34.4 | 652 | 0.7 | 512 |
Cbexi (fF) | Ccexi (fF) | Cbcxi (fF) | Lexi (pH) | Lbxi (pH) | Lcxi (pH) | Rexi (Ω) | Rbxi (Ω) | Rcxi (Ω) |
4.5 | 24.2 | 15.5 | 10.5 | 9.5 | 11.1 | 0.87 | 1.35 | 0.78 |
Q1 | Q2 | Q3 | Q4 | Q5 | |
---|---|---|---|---|---|
Zs (Ω) | 18.7 + j14.3 | 21.4 + j10.4 | 21.3 + j4.7 | 20.5 + j0.6 | 20.2 + j0.3 |
Zl (Ω) | 21.1 + j32.3 | 33.4 + j29.7 | 33.9 + j30.1 | 33.6 + j30.0 | 33.6 + j30.0 |
Pout (dBm) | −1.39 | 3.65 | 6.38 | 7.07 | 7.2 |
Ref. | Freq. (GHz) | RB (%) | Technology (ft/fmax GHz) | Gain (dB) | Topology /Devices/Stages | PDC (mW) | Psat (dBm) | Chip-Size (mm2) |
---|---|---|---|---|---|---|---|---|
[3] | 40–222 | 138.9 | 250 nm InP HBT (375/650) | 10 | DA × 2 × 4 | 105 | 8.5 | 0.5 × 0.6 |
[4] | 40–185 | 128.9 | 500 nm InP DHBT (350/400) | 10 | DA × 2 × 5 | 96 | 10 | 0.8 × 0.75 |
[5] | DC–170 | 200 | 500 nm InP DHBT (360/490) | 12 | DA × 3 × 5 | 180 | 10 | 1.5 × 0.65 |
[6] | DC–110 | 200 | 500 nm InP DHBT (400/400) | 13 | DA × 2 × 5 | 129 | 11.5 | 1.7 × 0.8 |
[8] | 55–135 | 84.2 | 250 nm InP HBT (350/600) | 27.3 | CE × 2 × 4 | 1420 | 21.4 | 1.86 × 0.64 |
[9] | 115–150 | 26.4 | 250 nm InP HBT (350/600) | 29.5 | CE × 2 × 5 | 1540 | 21.8 | 1.78 × 0.42 |
This work | 56–161 | 96.8 | 500 nm InP DHBT (350/535) | 19.5 | CE × 5 | 33.3 | 5.9 | 1.2 × 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Yu, W.; Yu, Q.; Wang, B.; Sun, Y.; Cheng, W.; Zhou, M. A 56–161 GHz Common-Emitter Amplifier with 16.5 dB Gain Based on InP DHBT Process. Electronics 2021, 10, 1654. https://doi.org/10.3390/electronics10141654
Hou Y, Yu W, Yu Q, Wang B, Sun Y, Cheng W, Zhou M. A 56–161 GHz Common-Emitter Amplifier with 16.5 dB Gain Based on InP DHBT Process. Electronics. 2021; 10(14):1654. https://doi.org/10.3390/electronics10141654
Chicago/Turabian StyleHou, Yanfei, Weihua Yu, Qin Yu, Bowu Wang, Yan Sun, Wei Cheng, and Ming Zhou. 2021. "A 56–161 GHz Common-Emitter Amplifier with 16.5 dB Gain Based on InP DHBT Process" Electronics 10, no. 14: 1654. https://doi.org/10.3390/electronics10141654
APA StyleHou, Y., Yu, W., Yu, Q., Wang, B., Sun, Y., Cheng, W., & Zhou, M. (2021). A 56–161 GHz Common-Emitter Amplifier with 16.5 dB Gain Based on InP DHBT Process. Electronics, 10(14), 1654. https://doi.org/10.3390/electronics10141654