Recultivation of Post-Mining Disturbed Land: Review of Content and Comparative Law and Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Concept of “Recultivation”: The Content Transformation from Ordinary “Cultivation” to “Revitalization” or “Renaturation”, or “Restoration”, or Even “Environmental Remediation”
- -
- “to be environmentally friendly;
- -
- to harmonize with the natural environment, complementing the missing elements, increasing the number and variety of ecological niches;
- -
- to meet aesthetic requirements;
- -
- to meet the present and future needs of the local population and the region”.
3.2. Legal Support for Recultivation Treatment
3.3. Evolution in Feasibility Studies of Recultivation Treatment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hipel, K.W.; Hegazy, T.; Yousefi, S. Combined strategic and tactical negotiation methodology for resolving complex brownfield conflicts. Pesqui. Oper. 2010, 30, 281–304. [Google Scholar] [CrossRef] [Green Version]
- Limasset, E.; Pizzol, L.; Merly, C.; Gatchett, A.M.; Le Guern, C.; Martinát, S.; Bartke, S. Points of attention in designing tools for regional brownfield prioritization. Sci. Total Environ. 2018, 622, 997–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiess, T.; De Sousa, C. Barriers to renewable energy development on brownfields. J. Environ. Policy Plan 2016, 4, 1–28. [Google Scholar] [CrossRef]
- Pengra, B.W.; Stehman, S.V.; Horton, J.A.; Dockter, D.J.; Schroeder, T.A.; Yang, Z.; Cohen, W.B.; Healey, S.P.; Loveland, T.R. Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. Remote Sens. Environ. 2020, 238, 111261. [Google Scholar] [CrossRef]
- Dutal, H.; Reis, M. Determining the effects of land use on soil erodibility in the Mediterranean highland regions of Turkey: A case study of the Korsulu stream watershed. Environ. Monit. Assess. 2020, 192, 192. [Google Scholar] [CrossRef] [PubMed]
- Polyanskaya, I.G.; Yurak, V.V.; Strovsky, V.E. Considering mining wastes as a factor of increasing the balance level of subsoil management in regions. Econ. Reg. 2019, 15, 1226–1240. [Google Scholar] [CrossRef]
- Smol, M.; Marcinek, P.; Duda, J.; Szołdrowska, D. Importance of Sustainable Mineral Resource Management in Implementing the Circular Economy (CE) Model and the European Green Deal Strategy. Resources 2020, 9, 55. [Google Scholar] [CrossRef]
- Luo, C.; Routh, J.; Dario, M.; Sarkar, S.; Wei, L.; Luo, D.; Liu, Y. Distribution and mobilization of heavy metals at an acid mine drainage affected region in South China, a post-remediation study. Sci. Total Environ. 2020, 724, 138122. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Wang, J.; Wang, R.; Wang, P. Using multi-fractal analysis to characterize the variability of soil physical properties in subsided land in coal-mined area. Geoderma 2020, 361, 114054. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Qiu, X.; Collette, Z.J.; Lurvey, Z.T. Metal content of stream sediments as a tool to assess remediation in an area recovering from historic mining contamination. Minerals 2020, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Ryumina, E.V. Economic Analysis of Damage from Environmental Violations; Nauka: Moscow, Russia, 2009; p. 331. [Google Scholar]
- Polyanskaya, I.G.; Yurak, V.V. Institutions, mechanisms and methods of innovative subsurface resources management. Econ. Reg. 2013, 1, 205–215. [Google Scholar] [CrossRef]
- Polyanskaya, I.G.; Yurak, V.V. Institutional assessment of environmentally oriented subsoil use. Econ. Reg. 2017, 13, 355–368. [Google Scholar] [CrossRef]
- Rosa, J.C.S.; Geneletti, D.; Morrison-Saunders, A.; Sánchez, L.E.; Hughes, M. To what extent can mine rehabilitation restore recreational use of forest land? Learning from 50 years of practice in southwest Australia. Land Use Policy 2020, 90, 104290. [Google Scholar] [CrossRef]
- Rosa, J.C.S.; Sánchez, L.E. Advances and challenges of incorporating ecosystem services into impact assessment. J. Environ. Manag. 2016, 180, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Ojekanmi, A.A.; Anne Naeth, M.; Huang, S. Calibration and application of quality-scoring functions using soil-forest productivity relationships in land reclamation. Ecol. Indic. 2020, 113, 106193. [Google Scholar] [CrossRef]
- Newbold, T.; Bentley, L.F.; Hill, S.L.L.; Edgar, M.J.; Horton, M.; Su, G.; Şekercioğlu, Ç.H.; Collen, B.; Purvis, A. Global effects of land use on biodiversity differ among functional groups. Funct. Ecol. 2020, 34, 684–693. [Google Scholar] [CrossRef]
- Tello, E.; Marull, J.; Padró, R.; Cattaneo, C.; Coll, F. The loss of landscape ecological functionality in the barcelona province (1956-2009): Could land-use history involve a legacy for current biodiversity? Sustainability 2020, 12, 2238. [Google Scholar] [CrossRef] [Green Version]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring forests and associated ecosystem services on appalachian coal surface mines. Environ. Manag. 2011, 47, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Chaplygin, N.N.; Galchenko, Y.P.; Papichev, V.I.; Zhulkovsky, D.V.; Sabyanin, G.V.; Proshlyapov, A.N. Ecological Problems of Geotechnology: New Ideas, Methods and Solutions; Nauchtekhlitizdat: Moscow, Russia, 2009; p. 320. [Google Scholar]
- Naumov, I.V. The study of spatial imbalances in the processes of violation and reclamation of land resources in Russia. News USMU 2019, 4, 142–151. [Google Scholar]
- Chemura, A.; Rwasoka, D.; Mutanga, O.; Dube, T.; Mushore, T. The impact of land-use/land cover changes on water balance of the heterogeneous Buzi sub-catchment, Zimbabwe. Remote Sens. Appl. Soc. Environ. 2020, 18, 100292. [Google Scholar] [CrossRef]
- Troeh, F.; Hobbs, J.; Donahue, R. Soil and Water Conservation, 2nd ed.; Prentice-Hall, Engelwood Cliffs: Upper Saddle River, NJ, USA, 1991; p. 235. [Google Scholar]
- Sánchez, L.E.; Silva-Sánchez, S.S.; Neri, A.C. Guide for Mine Closure Planning, 1st ed.; Brazilian Mining Association: Brasília, Brazil, 2014; p. 224. Available online: http://www.ibram.org.br/sites/1300/1382/00004552.pdf (accessed on 7 May 2020).
- ICMM–International Council on Mining & Metals Integrated Mine Closure Good Practice Guide, 2nd ed.; ICMM: London, UK, 2019; Available online: http://www.icmm.com/website/publications/pdfs/closure/190107_good_practice_guide_web.pdf (accessed on 7 May 2020).
- Terrence, T.J. Reclamation of disturbed lands. In Encyclopedia of Environmental Analysis and Remediation; Meyers, R.A., Ed.; Wiley: New York, NY, USA, 1998; pp. 4078–4101. [Google Scholar]
- National Academy of Sciences. Rehabilitation Potential of Western Coal Lands; Ballinger Publishing Co.: Cambridge, UK, 1974; p. 143. [Google Scholar]
- Gaidin, A.M. Revitalization of post-technological landscapes. Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2011, 6, 494–498. [Google Scholar]
- Kalita, E.; Baruah, J. Environmental remediation. In Colloidal Metal Oxide Nanoparticles. Synthesis, Characterization and Applications, Metal Oxides; Elsevier: Amsterdam, The Netherlands, 2020; pp. 525–576. [Google Scholar] [CrossRef]
- Remediation & Environmental Cleanup Services in the US 2013, IBISWorld Industry Report 56291. Available online: https://www.ibisworld.com/united-states/market-research-reports/remediation-environmental-cleanup-services-industry/ (accessed on 7 May 2020).
- Mandpe, A.; Lakshmikanthan, P.; Kumar, S.; Hettiarachchi, H. Mining for recovery as an option for dumpsite rehabilitation: Case study from Nagpur. India J. Environ. Eng. Sci. 2019, 1900021. [Google Scholar] [CrossRef]
- Carlowitz, H.C.V. Sylvicultura Oeconomica. Anweisung zur Wilden BAUM-Zucht. (Economic Forestry. Instruction to Wild Tree Breeding); Irmer, K., Kießling, A., Eds.; TU Bergakademie Freiberg and Akademische Buchhandlung: Freiberg, Germany, 2000; p. 195. [Google Scholar]
- Kretschmann, J. Sustainable Change of Coal-Mining Regions. Min. Metall. Explor. 2020, 37, 167–178. [Google Scholar] [CrossRef]
- Motorina, L.V. Recultivation of land disturbed by industry. Izv. USSR Acad. Sci. 1966, 5, 40–47. [Google Scholar]
- Ovchinnikov, V.A. Surface Restoration with Transportless Systems; Priok. kn.: Tula, Russia, 1966; p. 72. [Google Scholar]
- Lazareva, I.V. Restoration (Recultivation) of Disturbed Territories-Experience of District Planning in Urban Planning Abroad; Publishing House Lit.: Moscow, Russia, 1962; p. 135. [Google Scholar]
- Chaykina, G.M.; Obyedkova, V.A. Recultivation of Disturbed Lands in the Mining Regions of the Urals; UrB RAS: Yekaterinburg, Russia, 2003; p. 267. [Google Scholar]
- Kolbasin, A.A. Land Recultivation and Some Economic Issues; Dnepropetr. s.-kh. in-t.: Dnepropetrovsk, Ukraine, 1972; p. 210. [Google Scholar]
- Bekarevich, N.E.; Gorobets, N.D.; Kolbasin, A.A.; Masiuk, N.T.; Pistunov, N.I.; Sidorovich, L.P.; Uzbek, I.K. On Land Recultivation in the Steppes of Ukraine; Promin: Dnepropetrovsk, Ukraine, 1971; p. 19. [Google Scholar]
- Motorina, L.V.; Ovchinnikov, V.A. Industry and Land Recultivation; Mysl: Moscow, Russia, 1975; p. 240. [Google Scholar]
- Gaidin, A.M. From geotechnology to geoesthetics. Min. J. 2009, 4, 72–74. [Google Scholar]
- Gaidin, A.M. Revitalization of landscapes disturbed by mining. Min. J. 2011, 8, 101–103. [Google Scholar]
- Petrishchev, V.P.; Ryakhov, R.V.; Dubrovskaya, S.A.; Noreika, S.Y. Evaluation of the dynamics of restoration processes and the effectiveness of the recultivation of technological systems of copper-pyrite deposits in the Southern Urals. Probl. Reg. Ecol. 2016, 5, 85–91. [Google Scholar]
- Chibilev, A.A.; Musikhin, G.D.; Petrishchev, V.P. Problems of environmental harmonization of mining landscapes of the Orenburg region. Min. J. 1999, 5–6, 99–103. [Google Scholar]
- Jancura, P.; Belacek, B. Quarry Revitalization Through Form of Symbolic Landscape; Isd: Krakow, Poland, 2003; p. 45. [Google Scholar]
- Krasavin, A.P. Recultivation of Disturbed Lands in the USA Open-Pit Mines; Isd: Moscow, Russia, 1982; p. 42. [Google Scholar]
- Motorina, L.V. Land recultivation in the general system for optimizing natural and technogenic landscapes. In Land Recultivation Disturbed by Mining; Conf: Tartu, Estonia, 1975; pp. 3–7. [Google Scholar]
- Motorina, L.V.; Zabelina, N.M. Recultivation of Land Disturbed by the Mining Industry. Literature Review; Isd. All-Union Institute of Scientific and Technical Information on Agriculture: Moscow, Russia, 1968; p. 89. [Google Scholar]
- Afanasyeva, A.I.; Savich, A.I.; Zabelin, N.M. From the experience of restoration of disturbed and polluted territories. Veg. Ind. Pollut. 1966, 5, 11–17. [Google Scholar]
- Burykin, I.M.; Stafeev, A.I. Land recultivation on the Kursk magnetic anomaly. Bull. Agric. Sci. 1973, 1, 19–28. [Google Scholar]
- Shubin, V.I.; Ershin, I.P. The experience of recultivation of dumps in the quarries of the Kamysh-Burunsky iron ore plant. Min. J. 1969, 7, 22–23. [Google Scholar]
- Cheklina, V.N. Features of Soil Formation on Dumps of Loose Rocks in Connection with Their Recultivation (on the Example of the Kimovsky and Ushakovsky Coal Cuts of the Moscow Region Basin). Ph.D. Thesis, Moscow State University, Moscow, Russia, 1973. [Google Scholar]
- Nature Conservation Society. Recommendations of a Scientific and Technical Meeting on the Restoration and Use of Territories Disturbed by Mining Operations in the Tula Region; Izd. Nature Conservation Society: Tula, Russia, 1964; p. 29. [Google Scholar]
- Motorina, L.V.; Zaitsev, G.A.; Izhevskaya, T.I.; Savich, A.I.; Cheklina, V.N. Recommendations and Guidelines for Agricultural and Forestry Restoration of Dumps in the Moscow Region Basin; Izd: Moscow, Russia, 1969; p. 42. [Google Scholar]
- Doronenko, E.P.; Elkin, A.Y. Restoration of disturbed lands in railway quarries. In Land Recultivation in the USSR; Izd: Moscow, Russia, 1973; pp. 269–271. [Google Scholar]
- Makhonina, G.I. Initial soil formation processes on the dumps of the Bazhenovsky asbestos deposit during their self-growth. In Plants and Industrial Environment; Izd: Ekaterinburg, Russia, 1979; pp. 82–101. [Google Scholar]
- Korkin, K.I. Economic efficiency of restoration of territories disturbed by open works. Min. J. 1965, 10, 33–35. [Google Scholar]
- Freytag, K.; Kendziora, P. Remediation mining in brandenburg, Germany-Status of rehabilitation [Sanierungsbergbau im land brandenburg-Stand der wiedernutzbarmachung]. Erzmetall J. Explor. 2002, 55, 645–652. [Google Scholar]
- Willscher, S.; Starke, S.; Felix, M. Environmental Impact after 30 to 60 Years of Remediation: Microbial Investigation of Hard Coal Mining Dumps in Germany. Adv. Mater. Res. 2009, 71–73, 701–704. [Google Scholar] [CrossRef]
- Wirth, P.; Černič Mali, B.; Fischer, W. Post-Mining Regions in Central Europe–Problems, Potentials, Possibilities; Oekom, München Oekom Verlag, Gesellschaft für Ökologische Kommunikation mbH Waltherstraße: München, Germany, 2012; p. 274. [Google Scholar]
- Krøijer, S.; Kollöffel, M. Undermining life: A German coal-mining region [focus]. Terrain 2019, 71, 1–11. [Google Scholar] [CrossRef]
- Wegner-Kozlova, E.O.; Guman, O.M. Actual issues of legislation on the recultivation of disturbed lands. News USMU 2015, 4, 61–66. [Google Scholar]
- Ergina, E.I.; Ergin, S.M.; Sidorenko, I.Y. Ecological and Economic Evaluation of the Disturbed Lands Recultivation Projects in the Republic of Crimea. IOP Conf. Ser. Earth Environ. Sci. 2020, 459, 022021. [Google Scholar] [CrossRef]
- Pactwa, K.; Woźniak, J.; Dudek, M. Coal mining waste in Poland in reference to circular economy principles. Fuel 2020, 270, 117493. [Google Scholar] [CrossRef]
- Ovchinnikov, V.A.; Motorina, L.G. Recultivation of territories disturbed by quarries. Min. J. 1968, 6, 20–22. [Google Scholar]
- Babayants, G.M.; Rimsha, G.B. Some considerations on the choice of development methods for the further development of iron ore mining in the KMA basin. Min. J. 1970, 3, 12–15. [Google Scholar]
- Krasavin, A.P. Evaluation of the economic efficiency of recultivation of disturbed areas in quarries taking into account the time factor. News USMU 1970, 1, 21–26. [Google Scholar]
- Bukovsky, N.M.; Zorin, L.F. Recultivation of Land Disturbed by Mining; Donbass: Donetsk, Ukrain, 1969; p. 222. [Google Scholar]
- Sakharev, V.G.; Scherbitsky, B.V. Handbook of Environmental Protection; Budiwelnik: Kiev, Ukrain, 1986; p. 152. [Google Scholar]
- Witt, M.B. Economic Problems of Land Recultivation; Stroyizdat: Moscow, Russia, 1980; p. 160. [Google Scholar]
- Witt, M.B. Economic Evaluation of Land Allotted for Construction; Stroyizdat: Moscow, Russia, 1984; p. 120. [Google Scholar]
- State Committee on Pricing under the Council of Ministers. Guidelines on the Inclusion of Costs for the Disturbed Lands’ Recultivation in the Cost and Wholesale Prices of Building Materials; Goskomtsen at the Council of Ministers of the USSR: Moscow, Russia, 1976; p. 21. [Google Scholar]
- Kirillov, T.B.; Ovchinnikov, V.A. On the issue of determining the effectiveness of recultivation of disturbed lands. In Land Recultivation Disturbed by Mining; Conf: Tartu, Estonia, 1975; pp. 123–129. [Google Scholar]
- Gorlov, V.D. Assessment of damage associated with violation of the surface of the earth in open cast mining. News USMU 1972, 3, 14–19. [Google Scholar]
- Doronenko, V.P. Land Recultivation Disturbed by Open Cast Mining; Nedra: Moscow, Russia, 1979; p. 263. [Google Scholar]
- Eskin, V.S. Recultivation of Land Disturbed by Opencast Mining; Nedra: Moscow, Russia, 1975; p. 184. [Google Scholar]
- Kravchenko, O.P.; Mazurov, A.A. Recultivation of Land Disturbed by Opencast Mining; Tsvetmetinformatsiya: Moscow, Russia, 1973; p. 71. [Google Scholar]
- Balashenko, V.V.; Ignatyeva, M.N.; Loginov, V.G. Natural resources potential of northern regions: Consistent features of comprehensive assessment. Econ. Reg. 2015, 4, 84–94. [Google Scholar] [CrossRef]
- Tatarkin, A.I.; Balashenko, V.V.; Loginov, V.G.; Ignatyeva, M.N. Methodological tools for assessing the investment attractiveness of renewable resources in northern and arctic territories. Econ. Reg. 2016, 3, 627–637. [Google Scholar] [CrossRef]
- USSR State Planning Committee; USSR Gosstroy; The Presidium of the USSR Academy of Sciences. Temporary Standard Guidelines for Determining the Economic Efficiency of Environmental Protection Measures and Assessing the Economic Damage Caused to the National Economy by Environmental Pollution Approved by Decree of the USSR State Planning Committee, USSR Gosstroy, and the Presidium of the USSR Academy of Sciences Dated October 21, 1983 No. 254/284/134; Izd: Moscow, Russia, 1983; p. 124. [Google Scholar]
- Deputy Chairman of the State Planning Commission of the USSR. Methodology for Determining the Economic Efficiency of Recultivation of Disturbed Lands Approved by Deputy Chairman of the State Planning Commission of the USSR 12/14/1985; Izd: Moscow, Russia, 1986; p. 92. [Google Scholar]
- Lin, H.; Zhu, Y.; Ahmad, N.; Han, Q. A scientometric analysis and visualization of global research on brownfields. Environ. Sci. Pollut. Res. 2019, 26, 17666–17684. [Google Scholar] [CrossRef] [PubMed]
- Willscher, S.; Schaum, M.; Goldammer, J.; Franke, M.; Kuehn, D.; Ihling, H.; Schaarschmidt, T. Environmental biogeochemical characterization of a lignite coal spoil and overburden site in Central Germany. Hydrometallurgy 2017, 173, 170–177. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Feng, Y. Linking the reclaimed soils and rehabilitated vegetation in an opencast coal mining area: A complex network approach. Environ. Sci. Pollut. Res. 2019, 26, 19365–19378. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.; Dudeney, A.; Meyer, S. Surface Regeneration of Coal Tips: 15 Years of Mine Rehabilitation in a Former Coal Mining Region in Southwest Germany. Legislation, Technology and Practice of Mine Land Reclamation, Proceedings of the Beijing International Symposium Land Reclamation and Ecological Restoration, Beijing, China; LRER: Beijing, China, 2014; pp. 617–624. [Google Scholar] [CrossRef]
- Wirth, P.; Chang, J.; Syrbe, R.-U.; Wende, W.; Hu, T. Green infrastructure: A planning concept for the urban transformation of former coal-mining cities. Int. J. Coal Sci. Technol. 2018, 5, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Grunewald, K.; Bastian, O. Ecosystem Services—Concept, Methods and Case Studies; Springer: Berlin, Germany, 2015; p. 312. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Valuing post-mining landscapes using an ecosystem services approach—An example from Germany. Ecol. Ind. 2012, 18, 567–574. [Google Scholar] [CrossRef]
- Khodzhiev, R.S.; Vasilevich, I.Y. Synergetic Model of Economic Assessment of the Natural System (on the Example of NP Curonian Spit); KSTU Publishing House: Kaliningrad, Russia, 2007; p. 177. [Google Scholar]
- Tishkov, A.A. (Ed.) Economics of Biodiversity Conservation; GEF Project “Preserving the Biodiversity of the Russian Federation” Institute of Environmental Economics: Moscow, Russia, 2002; p. 246. [Google Scholar]
- Bobylev, S.N. The Economy of Biodiversity Conservation. Increasing the Value of Nature Management; Nauka: Moscow, Russia, 1999; p. 88. [Google Scholar]
- Fomenko, G.A.; Fomenko, N.A.; Loshadkin, K.A.; Mikhailova, A.V. Monetary Valuation of Natural Resources, Sites and Ecosystem Services in Biodiversity Conservation Management: Regional Experience. A Guide for Practitioners; NPP ‘Cadastre’: Yaroslavl, Russia, 2002; p. 80. [Google Scholar]
- Daly-Hassen, H.; Riera, P.; Mavsar, R.; Gammoudi, A.; Garcia, D. Valuing Trade-offs Between Local Forest Uses and Environmental Services in Tunisia. Environ. Econ. Policy 2017, 6, 268–282. [Google Scholar] [CrossRef]
- Rodriguez-Entrena, M.; Espinosa, M.; Barreiro-Herle, J. The role of ancillary benefits on the value of agricultural soils carbon sequestration programmes: Evidence from a latent class approach to Andalusian olive groves. Ecol. Econ. 2014, 99, 63–73. [Google Scholar] [CrossRef]
- Ninan, K.N.; Inoue, M. Valuing forest ecosystem services: Case study of a forest reserve in Japan. Ecosyst. Serv. 2013, 5, 78–87. [Google Scholar] [CrossRef]
- Pham, T.D.; Kaida, N.; Yoshino, K.; Nguyen, X.H.; Nguyen, H.T.; Bui, D.T. Willingness to pay for mangrove restoration in the context of climate change in the Cat Ba biosphere reserve, Vietnam. Ocean Coast. Manag. 2018, 163, 269–277. [Google Scholar] [CrossRef]
- Hassen, G.; Bantider, A. Assessment of drivers and dynamics of gully erosion in case of Tabota Koromo and Koromo Danshe watersheds, South Central Ethiopia. Geoenviron. Disasters 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Bada, C.A.K.; Hack, J. Economic Valuation of Ecosystem Services for the Sustainable Management of Agropastoral Dams. A Case Study of the Sakabansi Dam, Northern Benin. Ecol. Indic. 2019, 105648. [Google Scholar] [CrossRef]
- Nyongesa, J.M.; Bett, H.K.; Lagat, J.K.; Ayuya, O.I. Estimating farmers’ stated willingness to accept pay for ecosystem services: Case of Lake Naivasha watershed Payment for Ecosystem Services scheme-Kenya. Ecol. Process. 2016, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Graves, A.R.; Morris, J.; Deeks, L.K.; Rickson, R.J.; Kibblewhite, M.G.; Harris, J.A.; Farewell, T.S.; Truckle, I. The Total Costs of Soils Degradation in England and Wales. Ecol. Econ. 2015, 119, 399–413. [Google Scholar] [CrossRef]
- Lindhjem, H.; Hu, T.; Ma, Z.; Skjelvik, J.; Song, G.; Vennemo, H.; Wu, J.; Zhang, S. Environmental economic impact assessment in China: Problems and prospects. Environ. Impact Assess. Rev. 2007, 27, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hansen, L. Conservation Reserve Program: Environmental Benefits Update. Agric. Resour. Econ. Rev. 2007, 36, 267–280. [Google Scholar] [CrossRef]
Type of Soil | Evaluation Method | Economic Evaluation | Unit | Area, ha | Economic Evaluation | Unit | Convertible Economic Evaluation by 2020 Using the Discounting Tool | Unit | Year of Evaluation | Country (Region/Entity/District/City) | Source |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperate climatic zone | |||||||||||
podzolic and sod-podzolic | market price | 182.00 | million USD per year | 1022 | 178,082.19 | USD per year per ha | 269,054.49 | USD per year per ha | 2015 | Great Britain, Wales | [100] |
river floodplains | market price | 63.00 | million USD per year | 987 | 63,829.79 | USD per year per ha | 93,639.05 | USD per year per ha | 2007 | China, Chongqing | [101] |
gray and brown forest | market price | 1.064 | million USD per year | 785 | 1355.41 | USD per year per ha | 1988.40 | USD per year per ha | 2007 | USA | [102] |
Subtropical climatic zone | |||||||||||
brown and taupe | quantitative evaluation | 17.70 | million USD per year | 1646 | 10,753.34 | USD per year per ha | 10,879.41 | USD per year per ha | 2011 | Spain, Andalusia | [94] |
red earth and yellow earth | market price | 0.31 | million USD per year | 459 | 675.38 | USD per year per ha | 578.05 | USD per year per ha | 2013 | Japan | [95] |
red earth and yellow earth | market price | 316.10 | million USD per year | 1756 | 180,011.39 | USD per year per ha | 154,068.96 | USD per year per ha | 2013 | Japan | [95] |
Subequatorial climatic zone | |||||||||||
red earth and yellow earth | willingness to pay | 8.64 | million USD per year | 712 | 12,134.83 | USD per year per ha | 12,873.59 | USD per year per ha | 2018 | Vietnam | [96] |
reddish brown | market price | 2.30–2.70 | million USD per year | 1345 | 1858.74 | USD per year per ha | 1858.61 | USD per year per ha | 2020 | South and Central Ethiopia, Tabota Coromo, Coromo Danshe | [97] |
red | market price | 53.70 | million USD per year | 1313 | 40,898.71 | USD per year per ha | 47,415.72 | USD per year per ha | 2019 | Benin, Sacabansi | [98] |
reddish brown | willingness to pay | 74.4685 | million USD per year | 340,000 | 219.025 | USD per year per ha | 384.67 | USD per year per ha | 2016 | Kenya, Naivasha | [99] |
Tropical climatic zone | |||||||||||
semi-deserts and deserts | willingness to pay | 0.7344 | million USD per year | 150,000 | 490 | USD per year per ha | 597 | USD per year per ha | 2017 | Tunisia | [93] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatyeva, M.; Yurak, V.; Pustokhina, N. Recultivation of Post-Mining Disturbed Land: Review of Content and Comparative Law and Feasibility Study. Resources 2020, 9, 73. https://doi.org/10.3390/resources9060073
Ignatyeva M, Yurak V, Pustokhina N. Recultivation of Post-Mining Disturbed Land: Review of Content and Comparative Law and Feasibility Study. Resources. 2020; 9(6):73. https://doi.org/10.3390/resources9060073
Chicago/Turabian StyleIgnatyeva, Margarita, Vera Yurak, and Natalia Pustokhina. 2020. "Recultivation of Post-Mining Disturbed Land: Review of Content and Comparative Law and Feasibility Study" Resources 9, no. 6: 73. https://doi.org/10.3390/resources9060073
APA StyleIgnatyeva, M., Yurak, V., & Pustokhina, N. (2020). Recultivation of Post-Mining Disturbed Land: Review of Content and Comparative Law and Feasibility Study. Resources, 9(6), 73. https://doi.org/10.3390/resources9060073