Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use
Abstract
:1. Introduction
- monitor the performance of their physical economy in an internationally comparable way and in relation to a worldwide standard,
- check on their progress toward sustainability in the context of SDGs, including their fair share, and
- adjust their incentive framework for the actors in production, consumption, and infrastructures, if necessary.
- benchmark their performance of life-cycle wide or cradle-to-gate resource use in relation to national and sectoral levels, based on relations e.g., to turnover, value added, or employees,
- integrate these indicators into existing environmental management schemes (such as the Eco-Management and Audit Scheme, EMAS, and the ISO 14000 series).
2. Changing Background and Foreground
2.1. Tipping Points Versus Gradual Environmental Change
2.2. Dynamics of Societal Choices and the Assessment of Trade-Offs
3. Socio-Metabolic Needs and Development Goals
3.1. Universal Biophysical Requirements
- Even when the socio-industrial metabolism uses materials and energy in a highly efficient manner and has maximized recycling for material supply, there will remain a minimum of primary input from the environment to compensate the unavoidable losses and final disposal of its excreta (i.e., waste deposition and emissions to air and water).
- The shift to renewable energies will still require the use of materials, and thus a certain amount of primary materials.
- The higher the stock of materials in the technosphere, the higher the internal requirements for materials and energy for maintenance, repair, and refurbishment; furthermore, given certain geometry and spatial distribution, the larger the area covered by buildings and infrastructures.
- (1)
- Material supply largely from internal recycling (and reuse, remanufacturing, etc.),
- (2)
- Energy supply from renewables (solar, wind, etc.),
- (3)
- The remaining inputs from and outputs to the environment staying within “safe” operational limits,
- (4)
- The anthropogenic stock reaching a dynamic flow equilibrium (net addition to stock = zero), in order not to supersede productive and natural areas required for the survival, health, and well-being of humans and nature.
3.2. Different Starting Conditions and Common Long-Term Targets
3.3. Linking to the SDGs
4. Managing Global Resource Use by Countries
4.1. Observing, Targeting, and Managing at Appropriate Scales
4.2. Actionable and Directionally Safe Management Targets
4.3. Attribution of Global Targets to Countries
5. Toward Management Targets for Global Resource Use
5.1. Biotic Resource Use
5.2. Abiotic Resources
6. Outlook
6.1. Conclusions so Far
6.2. Target Setting and Societal Learning
6.3. Actions Needed
6.3.1. Science and Research
6.3.2. Discussion and Agreement between Involved Actors
6.3.3. Testing S&KBTs
Funding
Conflicts of Interest
References
- Oberle, B.; Bringezu, S.; Hatfield-Dodds, S.; Hellweg, S.; Schandl, H.; Clement, J.; Cabernard, L.; Che, N.; Chen, D.; Droz-Georget, H.; et al. IRP (2019) Global Resources Outlook 2019: Natural Resources for the Future We Want. A Report of the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/27517/GRO_2019.pdf?sequence=3&isAllowed=y (accessed on 14 July 2019).
- Ekins, P.; Hughes, N.; Bringezu, S.; Arden Clark, C.; Fischer-Kowalski, M.; Graedel, T.; Hajer, M.; Hashimoto, S.; Hatfield-Dodds, S.; Havlik, P.; et al. UNEP (2017) Resource Efficiency: Potential and Economic Implications. A Report of the International Resource Panel. Available online: http://wedocs.unep.org/bitstream/handle/20.500.11822/21230/resource_efficiency_potential_economic_implications.pdf?sequence=1&isAllowed=y (accessed on 14 July 2019).
- Bringezu, S.; Ramaswami, A.; Schandl, H.; O’Brien, M.; Pelton, R.; Acquatella, J.; Ayuk, E.; Chiu, A.; Flanegin, R.; Fry, J.; et al. IRP (2017) Assessing Global Resource Use: A Systems Approach to Resource Efficiency and Pollution Reduction. A Report of the International Resource Panel. United Nations Environment Programme: Nairobi, Kenya. Available online: http://wedocs.unep.org/bitstream/handle/20.500.11822/22583/Full%20Report%20-%20Assessing%20Global%20Resource%20Use.pdf?sequence=1&isAllowed=y (accessed on 14 July 2019).
- Raworth, K. A safe and just space for humanity: Can we live within the doughnut. Oxfam Policy Pract. Clim. Change Resil. 2012, 8, 1–26. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347. [Google Scholar] [CrossRef] [PubMed]
- Max-Neef, M.A. Human Scale Development: Conception, Application and Further Reflections; The Apex Press: New York, NY, USA, 1992. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Rao, N.D.; Min, J. Decent Living Standards: Material Prerequisites for Human Wellbeing. Soc. Indic. Res. 2018, 138, 225–244. [Google Scholar] [CrossRef]
- Hertwich, E.; van der Voet, E.; Suh, S.; Tukker, A.H.M.; Kazmierczyk, P.; Lenzen, M.; Mc-Neely, J.; Moriguchi, Y. UNEP (2010) Assessing the Environmental Impacts of Consumption and Production: Priority Products and Materials. A report of the Working Group on Environmental Impacts of Products and Materials to the International Panel for Sustainable Resource Management. Available online: http://www.unep.fr/shared/publications/pdf/DTIx1262xPA-PriorityProductsAndMaterials_Report.pdf (accessed on 14 July 2019).
- Vita, G.; Hertwich, E.G.; Stadler, K.; Wood, R. Connecting global emissions to fundamental human needs and their satisfaction. Environ. Res. Lett. 2019, 14, 014002. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. (Eds.) IPCC: Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special REPORT on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- European Environmental Agency (EEA). Environmental Indicators: Typology and Overview; Smeets, E., Weterings, R., Eds.; EEA Technical Report No 25; European Environmental Agency (EEA): Copenhagen, Denmark, 1999; p. 19. [Google Scholar]
- Bringezu, S.; O’Brien, M.; Schütz, H. Beyond biofuels: Assessing global land use for domestic consumption of biomass. Land Use Policy 2012, 29, 224–232. [Google Scholar] [CrossRef]
- Bührs, T. Environmental Space as a Basis for Legitimating Global Governance of Environmental Limits. Glob. Environ. Polit. 2009, 9, 111–135. [Google Scholar] [CrossRef]
- Häyhä, T.; Lucas, P.L.; van Vuuren, D.P.; Cornell, S.E.; Hoff, H. From Planetary Boundaries to national fair shares of the global safe operating space—How can the scales be bridged? Glob. Environ. Change 2016, 40, 60–72. [Google Scholar] [CrossRef]
- O’Neill, D.W.; Fanning, A.L.; Lamb, W.F.; Steinberger, J.K. A good life for all within planetary boundaries. Nat. Sustain. 2018, 1, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing; UN Environment: Nairobi, Kenya, 2013; ISBN 978-1-107-05799-1. [Google Scholar]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Bringezu, S. Possible Target Corridor for Sustainable Use of Global Material Resources. Resources 2015, 4, 25–54. [Google Scholar] [CrossRef]
- UN Environment (Ed.) Global Environment Outlook 6; UN Environment: Nairobi, Kenya, 2019. [Google Scholar]
- Evans, A. Resource Scarcity, Climate Change and the Risk of Violent Conflict; World Development Report 2011, Background Paper; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Blondel, A. Climate Change Fuelling Resource-Based Conflicts in the Asia-Pacific; Asia-Pacific Human Development Report Background Papers Series NY2012/12; United Nations Development Programme: New York, NY, USA, 2012. [Google Scholar]
- Koubi, V.; Spilker, G. Natural Resources, Climate Change, and Conflict. In Oxford Research Encyclopedia of Politics; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- McAuliffe, M.; Martin, R. World Migration Report 2018; World Migration Organization: Geneva, Switzerland, 2017. [Google Scholar]
- BUND. Background Briefing on Hambach Forest. Available online: http://www.foeeurope.org/sites/default/files/extractive_industries/2018/2017_11_bund-background_hambacher_forst_en1.pdf (accessed on 15 July 2019).
- Imboden, C.; Moczek, N. Risks and Opportunities in the Biodiversity Management and Related Stakeholder Involvement of the RWE Hambach Lignite Mine; IUCN: Gland, Switzerland, 2015. [Google Scholar]
- Hill, M.; Varone, F. The Public Policy Process, 7th ed.; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Rousseau, D.; Schreiber, Y. “Generation climate” to Occupy Huge German Coal Mine—The Local. 2019. Available online: https://www.thelocal.de/20190619/generation-climate-to-occupy-huge-german-coal-mine (accessed on 16 July 2019).
- Bundesministerium für Wirtschaft und Energie (BMWi) (2019): Kommission “Wachstum, Strukturwandel und Beschäftigung”—Abschlussbericht. [Federal Ministry for Economic Affairs and Energy: Commission “Growth, Structural Change and Employment”, German only]. Berlin. Available online: https://www.bmwi.de/Redaktion/DE/Artikel/Wirtschaft/kohleausstieg-und-strukturwandel.html (accessed on 16 July 2019).
- Bundesministerium für Wirtschaft und Energie (BMWi) (2019): Eckpunkte zur Umsetzung der strukturpolitischen Empfehlungen der Kommission „Wachstum, Strukturwandel und Beschäftigung“ für ein „Strukturstärkungsgesetz Kohleregionen“. [Federal Ministry for Economic Affairs and Energy: Cornerstones for the Implementation of the Recommendations of the Commission “Growth, Structural Change and Employment” for a “Structure Enhancement Law Coal Regions” German Only]. Available online: https://www.bmwi.de/Redaktion/DE/Downloads/E/eckpunkte-strukturwandel.html (accessed on 16 July 2019).
- Federal Ministry for Economic Affairs and Energy (BMWi). Use of Nuclear Energy in Germany. 2019. Available online: https://www.bmwi.de/Redaktion/EN/Textsammlungen/Energy/uranium-and-nuclear-energy.html?cms_artId=255608 (accessed on 16 July 2019).
- Hertwich, E.; de Larderel, J.A.; Arvesen, A.; Bayer, P.; Bergesen, J.; Bouman, E.; Gibon, T.; Heath, G.; Peña, C.; Purohit, P. (Eds.) UNEP (2016) Green Energy Choices: The Benefits, Risks and Trade-Offs of Low-Carbon Technologies for Electricity Production. Report of the International Resource Panel. Available online: http://www.un-expo.org/wp-content/uploads/2017/06/Green_energy_choices_The_benefits_risks_and_trade-offs_of_low-carbon_technologies_for_electricity_production-2016UNEP_GEC_web.pdf.pdf (accessed on 14 July 2019).
- Van der Voet, E.; Salminen, R.; Eckelman, M.; Mudd, G.; Norgate, T.; Hischier, R. UNEP (2013) Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles. A Report of the Working Group on the Global Metal Flows to the International Resource Panel. Available online: https://orbit.dtu.dk/files/54666484/Environmental_Challenges_Metals_Full_Report.pdf (accessed on 14 July 2019).
- Francis, R.A. Socioecological Transitions and Land-Use Change. In Landscape Ecology; Fischer-Kowalski, M., Haberl, H., Eds.; Edward Elgar: Cheltenham, Gloucestershire, UK, 2008. [Google Scholar]
- Bringezu, S. Visions of a sustainable resource use. In Sustainable Resource Management: Global Trends, Visions and Policies; Bringezu, S., Bleischwitz, R., Eds.; Greenleaf Publishing: Sheffield, UK, 2009; pp. 155–215. ISBN 978-1-906093-26-6. [Google Scholar]
- Deilmann, C.; Effenberger, K.H.; Banse, J. Housing stock shrinkage: Vacancy and demolition trends in Germany. Build. Res. Inf. 2009, 37, 660–668. [Google Scholar] [CrossRef]
- Gruhler, K.; Böhm, R. Auswirkungen des Demografischen Wandels auf das Stofflager und die Stoffflüsse des Wohngebäudebestands. Deutschland 2050; (Impacts of demographic change on material stocks and flows of residential buildings. Germany 2050); Fraunhofer IRB Verlag: Stuttgart, Germany, 2011; ISBN 978-3-8167-8452-4. [Google Scholar]
- Müller, D.B. Stock dynamics for forecasting material flows—Case study for housing in The Netherlands. Ecol. Econ. 2006, 59, 142–156. [Google Scholar] [CrossRef]
- Bergsdal, H.; Brattebø, H.; Bohne, R.A.; Müller, D.B. Dynamic material flow analysis for Norway’s dwelling stock. Build. Res. Inf. 2007, 35, 557–570. [Google Scholar] [CrossRef]
- IRP The International Resource Panel. 10 Key Messages on Climate Change; IRP The International Resource Panel: Paris, France, 2015. [Google Scholar]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; De Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 2016, 353, 288–291. [Google Scholar] [CrossRef] [PubMed]
- MEA Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; MEA Millennium Ecosystem Assessment: Córdoba, Argentina, 2005. [Google Scholar]
- Díaz, S.; Settele, J.; Brondízio, E. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBS: Bonn, Germany, 2019. [Google Scholar]
- Bringezu, S.; Potočnik, J.; Schandl, H.; Lu, Y.; Ramaswami, A.; Swilling, M.; Suh, S. Multi-scale governance of sustainable natural resource use-Challenges and opportunities for monitoring and institutional development at the national and global level. Sustainibility 2016, 8. [Google Scholar] [CrossRef]
- Chaudhary, A.; Pfister, S.; Hellweg, S. Spatially Explicit Analysis of Biodiversity Loss Due to Global Agriculture, Pasture and Forest Land Use from a Producer and Consumer Perspective. Environ. Sci. Technol. 2016, 50, 3928–3936. [Google Scholar] [CrossRef]
- Herrick, J.; Arnalds, O.; Bestelmeyer, B.; Bringezu, S.; Han, G.; Johnson, M.-V.; Kimiti, D.; Lu, Y.; Montanarella, L.; Pengue, W.; et al. UNEP (2016) Unlocking the Sustainable Potential of Land Resources: Evaluation Systems, Strategies and Tools. A Report of the Working Group on Land and Soils of the International Resource Panel. ISBN 978-92-807-3578-9. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/7708/-Unlocking_the_sustainable_potential_of_land_resources_Evaluating_systems,_strategies_and_tools_Summary_for_policymakers-2016Unlocking_the_Sustainab.pdf?sequence=3&isAllowed=y (accessed on 14 July 2019).
- Bringezu, S.; Schütz, H.; Pengue, W.; O’Brien, M.; Garcia, F.; Sims, R.; Howarth, R.W.; Kauppi, L.; Swilling, M.; Herrick, J. UNEP (2014) Assessing Global Land Use: Balancing Consumption with Sustainable Supply. United Nations Environment Programme. p. 131, ISBN 978-92-807-3330-3. Available online: http://wedocs.unep.org/bitstream/handle/20.500.11822/8861/assessing_global_land_use.pdf?sequence=1&isAllowed=y (accessed on 14 July 2019).
- O’Brien, M.; Schütz, H.; Bringezu, S. The land footprint of the EU bioeconomy: Monitoring tools, gaps and needs. Land Use Policy 2015, 47, 235–246. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.; Bringezu, S. What is a sustainable level of timber consumption in the EU: Toward global and EU benchmarks for sustainable forest use. Sustainibility 2017, 9, 812. [Google Scholar] [CrossRef]
- Bringezu, S. Carbon Recycling for Renewable Materials and Energy Supply. J. Ind. Ecol. 2014, 18, 327–340. [Google Scholar] [CrossRef]
- Hoppe, W.; Thonemann, N.; Bringezu, S. Life Cycle Assessment of Carbon Dioxide-Based Production of Methane and Methanol and Derived Polymers. J. Ind. Ecol. 2018, 22, 327–340. [Google Scholar] [CrossRef]
- Mostert, C.; Bringezu, S. Measuring Product Material Footprint as New Life Cycle Impact Assessment Method: Indicators and Abiotic Characterization Factors. Resources 2019, 8, 61. [Google Scholar] [CrossRef]
- Eurostat Material Flow Accounts Statistics—Material Footprints. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Material_flow_accounts_statistics_-_material_footprints (accessed on 15 June 2019).
- European Commission. COMMISSION REGULATION (EU) 2017/1505 of 28 August 2017 amending Annexes I, II and III to Regulation (EC) No 1221/2009 of the European Parliament and of the Council on the Voluntary Participation by Organisations in a Community Eco-Management and Audit Scheme. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R1505&from=EN (accessed on 14 July 2019).
- Cordell, D.; White, S. Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security. Agronomy 2013, 3, 86–116. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; You, L.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.J.B.; Yang, H. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef] [Green Version]
- De Vries, W.; Kros, J.; Kroeze, C.; Seitzinger, S.P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 2013, 5, 392–402. [Google Scholar] [CrossRef]
- Egenolf, V.; Bringezu, S. Conceptualization of an Indicator System for Assessing the Sustainability of the Bioeconomy. Sustainability 2019, 11, 443. [Google Scholar] [CrossRef]
- Science Based Targets. Available online: https://sciencebasedtargets.org/ (accessed on 14 July 2019).
- r3.0 | Redesign for Resilience | Regeneration for a Green, Enclusive and Open Economie. Available online: https://www.r3-0.org/ (accessed on 14 July 2019).
- Sustainable Development Goals Knowledge Platform. Available online: https://sustainabledevelopment.un.org/hlpf (accessed on 14 July 2019).
- The World Economic Forum. Available online: https://www.weforum.org/ (accessed on 14 July 2019).
- EEA. More From Less—Material Resource Efficiency in Europe; EEA Report 10/2016; European Environment Agency: Luxemburg, 2016. [Google Scholar]
- European Commission Environment—Eco-Management and Audit Scheme (EMAS). Available online: http://ec.europa.eu/environment/emas/index_en.htm (accessed on 14 July 2019).
Biotic Resources | Micro Management Addressing Primary Sector | Macro Management Addressing Manufacturing and Final Consumption | |
---|---|---|---|
Resource-Specific Target | Compound Target | ||
Agriculture | Shift toward sustainable cultivation schemes (certified proportion to increase) | 0.20 ha/person cropland in 2030, 0.16 ha/person in 2050 | 2 t/person primary biomass in 2050 |
Forestry | 0.4 m3/person primary timber (world) in 2050 1.3 m3/person primary timber (EU) in 2050 | ||
Fisheries | Respect safe maximum quota for each commercial species | t. b. d. |
Abiotic Resources | Micro Management Addressing Primary Sector | Macro Management Addressing Manufacturing and Final Consumption | |
---|---|---|---|
Resource-Specific Target | Compound Target | ||
Fossil fuels | Increase the share of certified responsible mining and quarrying | Phase out incineration Shift to renewable energy Shift to carbon recycling | 6–12 t/person primary extraction in 2050 |
Metal minerals | Minimize need of primary extraction Shift to recycling | ||
Construction minerals | |||
Industrial minerals |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bringezu, S. Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use. Resources 2019, 8, 140. https://doi.org/10.3390/resources8030140
Bringezu S. Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use. Resources. 2019; 8(3):140. https://doi.org/10.3390/resources8030140
Chicago/Turabian StyleBringezu, Stefan. 2019. "Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use" Resources 8, no. 3: 140. https://doi.org/10.3390/resources8030140
APA StyleBringezu, S. (2019). Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use. Resources, 8(3), 140. https://doi.org/10.3390/resources8030140