Population–Urbanization–Energy Nexus: A Review
Abstract
:1. Introduction
Rationale
2. Methodology
3. Result and Discussion
3.1. Energy on Urbanization
3.2. Urbanization on Energy
3.3. Population and Urbanization
3.4. Population and Energy
4. Research Outcomes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, O.; Crawford, A.; Gibson, J. Boom or Bust: How commodity price volatility impedes poverty reduction, and what to do about it; IISD: Winnipeg, MB, Canada, 2008; ISBN 9781894784047. [Google Scholar]
- Prasad, M.N.V. Recovery of Resources From Biowaste for Pollution Prevention. Environ. Mater. Waste 2016, 1–19. [Google Scholar] [CrossRef]
- Luo, Y.; Tung, R.L. International expansion of emerging market enterprises: A springboard perspective. J. Int. Bus. Stud. 2007, 38, 481–498. [Google Scholar] [CrossRef]
- Bilgen, S. Structure and environmental impact of global energy consumption. Renew. Sustain. Energy Rev. 2014, 38, 890–902. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Investment 2018: Executive Summary; IEA Publishing: Paris, France, 2018; pp. 1–12. [Google Scholar]
- International Energy Agency. World Energy Outlook Executive Summary; IEA Publishing: Paris, France, 2016. [Google Scholar]
- Tanaka, N. World Energy Outlook 2010; IEA Publishing: Paris, France, 2010. [Google Scholar]
- Jones, D.W. How urbanization affects energy-use in developing countries. Energy Policy 1991, 19, 621–630. [Google Scholar] [CrossRef]
- Müller-Kraenner, S. China’s and India’s Emerging Energy Foreign Policy; German Development Institute: Bonn, Germany, 2008; p. 29. [Google Scholar]
- Greller, A.M.; Perlin, J. A Forest Journey: The Role of Wood in the Development of Civilization. Bull. Torrey Bot. Club 2006, 120, 77. [Google Scholar] [CrossRef]
- Viña, A.; Echavarria, F.R.; Rundquist, D.C. Satellite change detection analysis of deforestation rates and patterns along the Colombia-Ecuador border. Ambio 2004, 33, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Finer, M.; Orta-Martínez, M. A second hydrocarbon boom threatens the Peruvian Amazon: Trends, projections, and policy implications. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef]
- Jager, H.I.; Efroymson, R.A.; Sublette, K.L.; Ashwood, T.L. Unnatural landscapes in ecology: Generating the spatial distribution of brine spills. Environmetrics 2005, 16, 687–698. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; Van Der Werf, G.R.; Kasibhatla, P.S.; Collatz, G.J.; Morton, D.C.; Defries, R.S. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 2010, 7, 1171–1186. [Google Scholar] [CrossRef] [Green Version]
- Wind, B.D.; Wallender, W.W. Fossil-fuel carbon emission control in irrigated maize production. Energy 1997, 22, 827–846. [Google Scholar] [CrossRef]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Coan, M.; Homer, C. The effect of Appalachian mountaintop mining on interior forest. Landsc. Ecol. 2007, 22, 179–187. [Google Scholar] [CrossRef]
- Parks, N. The price of tar-sands oil. Front. Ecol. Environ. 2009, 7, 232–237. [Google Scholar] [CrossRef]
- Mahur, A.K.; Gupta, M.; Varshney, R.; Sonkawade, R.G.; Verma, K.D.; Prasad, R. Radon exhalation and gamma radioactivity levels in soil and radiation hazard assessment in the surrounding area of National Thermal Power Corporation, Dadri (U.P.), India. Radiat. Meas. 2013, 50, 130–135. [Google Scholar] [CrossRef]
- Luken, J.O.; Hinton, A.C.; Baker, D.G. Response of woody plant communities in power-line corridors to frequent anthropogenic disturbance. Ecol. Appl. 1992, 2, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Avtar, R.; Sethi, M.; Surjan, A. Delhi’s land cover change in post transit era. Cities 2016, 50, 11–118. [Google Scholar] [CrossRef]
- Dobkin, D.S.; Rich, A.C.; Niles, L.J. Defining forest fragmentation by corridor width: the influence of narrow forest-dividing corridors on forest-nesting birds in southern New Jersey. Conserv. Biol. 1994, 8, 1109. [Google Scholar]
- Kusakana, K.; Vermaak, H.J. Hydrokinetic power generation for rural electricity supply: Case of South Africa. Renew. Energy 2013, 55, 467–473. [Google Scholar] [CrossRef]
- Dale, V.H.; Kline, K.L.; Wiens, J.; Fargione, J. Biofuels: Implications for land use and biodiversity. In ESA Biofuels and Sustainability Reports; Ecological Society of America: Washington, DC, USA, 2010; p. 13. [Google Scholar]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land Clearing and the Biofuel Carbon Debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [Green Version]
- Keeney, R.; Hertel, T.W. The indirect land use impacts of United States biofuel policies: The importance of acreage, yield, and bilateral trade responses. Am. J. Agric. Econ. 2009, 91, 895–909. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. Bioscience 2006, 52, 143. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of Land-Use and Land-Cover Change inTropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Kline, K.L.; Dale, V.H.; Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P.; Searchinger, T.D. Biofuels: Effects on Land and Fire. Science 2008, 321, 199–202. [Google Scholar]
- Kline, K.; Dale, V.H.; Lee, R.; Leiby, P. In Defense of Biofuels, Done Right. Issues Sci. Tech. 2009, 25, 75–84. [Google Scholar]
- Avtar, R.; Kumar, P.; Oono, A.; Saraswat, C.; Dorji, S.; Hlaing, Z. Potential application of remote sensing in monitoring ecosystem services of forests, mangroves and urban areas. Geocarto Int. 2017, 32, 874–885. [Google Scholar] [CrossRef]
- Avtar, R.; Yunus, A.P.; Kraines, S.; Yamamuro, M. Evaluation of DEM generation based on Interferometric SAR using TanDEM-X data in Tokyo. Phys. Chem. Earth Parts A/B/C 2015, 83, 166–177. [Google Scholar] [CrossRef]
- Edwards, T.; Creary, M.; Russell, D.; Aiken, K.; Fisher, E.; Espeut, P. FAA 118/119 Tropical Forests and Biodiversity Assessment; USAID: Washington, DC, USA, 2008. [Google Scholar]
- IUCN. Implementing Sustainable Bioenergy Production: A Compilation of Tools and Approaches; International Union for Conservation of Nature: Gland, Switzerland, 2008; ISBN 9782831711317. [Google Scholar]
- Gleick, P.H. The World’s Water 2008–2009: Three Gorges Dam Project, Yangtze River, China. Water Brief 3. 2009. Available online: https://sswm.info/sites/default/files/reference_attachments/GLEICK%202009%20Three%20Gorges%20Dam%20Project%20Yangtze%20River%20China.pdf (accessed on 10 November 2017).
- Waffle, A.D.; Corry, R.C.; Gillespie, T.J.; Brown, R.D. Urban heat islands as agricultural opportunities: An innovative approach. Landsc. Urban Plan. 2017, 161, 103–114. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S.; Dhakal, S. Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries. Energy Policy 2012, 46, 268–277. [Google Scholar] [CrossRef]
- Johnson, F.M.; Sharma, A. GCM simulations of a future climate: How does the skill of GCM precipitation simulations compare to temperature simulations? In Proceedings of the 18th World IMACS MODSIM Congress, Cairns, Australia, 13–17 July 2009; pp. 2618–2624. [Google Scholar]
- Ackermann, T.; Soder, L. Wind energy technology and current status: a review. Renew. Sustain. Energy Rev. 2000, 4, 315–374. [Google Scholar] [CrossRef]
- Dale, V.H.; Efroymson, R.A.; Kline, K.L. The land use-climate change-energy nexus. Landsc. Ecol. 2011, 26, 755–773. [Google Scholar] [CrossRef]
- Sheng, P.; He, Y.; Guo, X. The impact of urbanization on energy consumption and efficiency. Energy Environ. 2017, 28, 673–686. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. Urbanization impact on residential energy consumption in China: the roles of income, urbanization level, and urban density. Environ. Sci. Pollut. Res. 2019, 26, 3542–3555. [Google Scholar] [CrossRef] [PubMed]
- Topcu, M.; Girgin, S. The impact of urbanization on energy demand in the Middle East. J. Int. Glob. Econ. Stud. 2016, 9, 21–28. [Google Scholar]
- Liu, X.; Peng, D. Study on the Threshold Effect of Urbanization on Energy Consumption. Theor. Econ. Lett. 2018, 8, 2220–2232. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Department of Economic and Social Affairs. World Urbanization Prospects 2018. Available online: https://population.un.org/wpp/Graphs/ (accessed on 12 December 2018).
- Serageldin, I.; Barrett, R.; Martin-Brown, J. The business of sustainable cities: Public-private partnerships for creative technical and institutional solutions; The World Bank: Washington, DC, USA, 1995; ISBN 0821333194. [Google Scholar]
- International Energy Agency. World Energy Outlook 2017; International Energy Agency: Paris, France, 2018. [Google Scholar]
- WHO Kobe. Available online: https://extranet.who.int/kobe_centre/en (accessed on 21 August 2018).
- Jiang, X.; Xia, B.; Guo, L. Research on urban heat island and its environmental effects of rapidly urbanized regions. Ecol. Sci. 2006, 2, 171–175. [Google Scholar]
- Kaufmann, R.K.; Seto, K.C.; Schneider, A.; Liu, Z.; Zhou, L.; Wang, W. Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Clim. 2007, 20, 2299–2306. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Shepherd, J.M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 2009, 1, 89–95. [Google Scholar] [CrossRef]
- D’Amour, C.B.R.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef]
- Creutzig, F.; Agoston, P.; Minx, J.C.; Canadell, J.G.; Andrew, R.M.; Le Quéré, C.; Peters, G.P.; Sharifi, A.; Yamagata, Y.; Dhakal, S. Urban infrastructure choices structure climate solutions. Nat. Clim. Chang. 2016, 6, 1054–1056. [Google Scholar] [CrossRef]
- Daniels, S.; Endfield, G.H. Narratives of climate change: introduction. J. Hist. Geogr. 2009, 35, 215–222. [Google Scholar] [CrossRef]
- Dawkins, C.J.; Nelson, A.C. Urban containment policies and housing prices: an international comparison with implications for future research. Land Use Policy 2002, 19, 1–12. [Google Scholar] [CrossRef]
- Creutzig, F.; Baiocchi, G.; Bierkandt, R.; Pichler, P.-P.; Seto, K.C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl. Acad. Sci. USA 2015, 112, 6283–6288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plann. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Johnston, R.A.; Madison, M.E. From land marks to landscapes: A review of current practices in the transfer of development rights. J. Am. Plan. Assoc. 1997, 63, 365–378. [Google Scholar] [CrossRef]
- Opdam, P.; Luque, S.; Jones, K.B. Changing landscapes to accommodate for climate change impacts: A call for landscape ecology. Landsc. Ecol. 2009, 24, 715–721. [Google Scholar] [CrossRef]
- Wander, M.M.; Parton, W.J.; Adler, P.R.; Barney, J.N.; Cruse, R.M.; Duke, C.S.; Fearnside, P.M.; Follett, R.F.; Gibbs, H.K.; Goldemberg, J. Sustainable biofuels redux. Science 2008, 322, 49–50. [Google Scholar]
- Bogdanski, A.; Dubois, O.; Jamieson, C.; Krell, R. Making Integrated Food-Energy Systems Work for People and Climate; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; ISBN 9789251067727. [Google Scholar]
- Termorshuizen, J.W.; Opdam, P. Landscape services as a bridge between landscape ecology and sustainable development. Landsc. Ecol. 2009, 24, 1037–1052. [Google Scholar] [CrossRef]
- Sohl, T.L.; Loveland, T.R.; Sleeter, B.M.; Sayler, K.L.; Barnes, C.A. Addressing foundational elements of regional land-use change forecasting. Landsc. Ecol. 2010, 25, 233–247. [Google Scholar] [CrossRef]
- Adnan, H. Water-Food-Energy Nexus in Asia and the Pacific; United Nations ESCAP: Bangkok, Thailand, 2013; p. 72. [Google Scholar]
- Future Earth. Future Earth 2025 Vision; Future Earth: Paris, France, 2014. [Google Scholar]
- Hardy, L.; Garrido, A.; Juana, L. Evaluation of Spain’s Water-Energy Nexus. Int. J. Water Resour. Dev. 2012, 28, 151–170. [Google Scholar] [CrossRef]
- Wolman, M.G. Population, land use, and environment: A long history. In Population and Land Use in Developing Countries; National Academy Press: Washington, DC, USA, 1993. [Google Scholar]
- Brown, M.A.; Rizy, C.G. Evaluating The Economic, energy and environmental impacts of a technology commercialization program. In Proceedings of the Energy Evaluation Conference, Chicago, IL, USA, 27 August 1997; pp. 1–11. [Google Scholar]
- Malik, R.P.S. Water-energy nexus in resource-poor economies: The Indian experience. Int. J. Water Resour. Dev. 2002, 18, 47–58. [Google Scholar] [CrossRef]
- Lofman, D.; Petersen, M.; Bower, A. Water, Energy and Environment Nexus: The California Experience. Int. J. Water Resour. Dev. 2002, 18, 73–85. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus; Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011; pp. 1–52. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). The water-energy-food nexus- A new approach in support of food security and sustainable agriculture. Environ. Sci. Policy 2016, 68, 97–106. [Google Scholar]
- Berkman, M. The electricity-water nexus: Is a crisis imminent? Water Policy 2015, 17, 1163–1175. [Google Scholar] [CrossRef]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; Van Ogtrop, F.; Curnow, J.; et al. Sustainable development and the water-energy-food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef]
- Rasul, G. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environ. Dev. 2016, 18, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Giupponi, C.; Gain, A.K. Integrated spatial assessment of the water, energy and food dimensions of the Sustainable Development Goals. Reg. Environ. Chang. 2017, 17, 1881–1893. [Google Scholar] [CrossRef]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Kling, C.L.; Arritt, R.W.; Calhoun, G.; Keiser, D. Integrated Assessment Models of the Food, Energy, and Water Nexus: A Review and an Outline of Research Needs. Ssrn 2017, 143–166. [Google Scholar] [CrossRef]
- Fang, D.; Chen, B. Linkage analysis for the water–energy nexus of city. Appl. Energy 2017, 189, 770–779. [Google Scholar] [CrossRef]
- Bieber, N.; Ker, J.H.; Wang, X.; Triantafyllidis, C.; van Dam, K.H.; Koppelaar, R.H.E.M.; Shah, N. Sustainable planning of the energy-water-food nexus using decision making tools. Energy Policy 2018, 113, 584–607. [Google Scholar] [CrossRef]
- Dai, J.; Wu, S.; Han, G.; Weinberg, J.; Xie, X.; Wu, X.; Song, X.; Jia, B.; Xue, W.; Yang, Q. Water-energy nexus: A review of methods and tools for macro-assessment. Appl. Energy 2018, 210, 393–408. [Google Scholar] [CrossRef]
- Brouwer, F.; Vamvakeridou-Lyroudia, L.; Alexandri, E.; Bremere, I.; Griffey, M.; Linderhof, V. The nexus concept integrating energy and resource efficiency for policy assessments: A comparative approach from three cases. Sustainability 2018, 10, 4860. [Google Scholar] [CrossRef]
- Noruzi, M.M.; Yazdandoost, F. Determining the Optimal Point In Arid Basins Using Water-Energy Nexus Approach. Iran Univ. Sci. Technol. 2019, 9, 423–435. [Google Scholar]
- Meng, F.; Liu, G.; Liang, S.; Su, M.; Yang, Z. Critical review of the energy-water-carbon nexus in cities. Energy 2019, 171, 1017–1032. [Google Scholar] [CrossRef]
- Kjellsson, J.; Webber, M. The Energy-Water Nexus: Spatially-Resolved Analysis of the Potential for Desalinating Brackish Groundwater by Use of Solar Energy. Resources 2015, 4, 476–489. [Google Scholar] [CrossRef] [Green Version]
- Gold, G.; Webber, M. The Energy-Water Nexus: An Analysis and Comparison of Various Configurations Integrating Desalination with Renewable Power. Resources 2015, 4, 227–276. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.-T. An Analysis of Operational Efficiencies in the Waste-to-Energy (WTE) Plants of Kaohsiung Municipality (Taiwan). Resources 2019, 2, 125. [Google Scholar] [CrossRef]
- Birney, C.; Jones, M.; Webber, M. A Spatially Resolved Thermodynamic Assessment of Geothermal Powered Multi-Effect Brackish Water Distillation in Texas. Resources 2019, 8, 65. [Google Scholar] [CrossRef]
Sr. No. | Authors | Type of Nexus Studied | Study Area Taken | Major Findings | Year of Publication |
---|---|---|---|---|---|
1. | Wolman, M Gordon [67] | Population, land use, and environment | Nanticoke River, Chesapeake Bay, United States |
| 1993 |
2. | Marilyn A. Brown and Collean G. Rizy [68] | Economic, energy, and environmental impacts of a technology commercialization program | The United States of America |
| 1997 |
3. | R P S Malik [69] | Water and energy nexus | India |
| 2002 |
4. | Denise Lofman, Matt Petersen & Aimée Bower [70] | Water, energy, and the environment | California and the western USA |
| 2002 |
5. | Seto, Karen C. Shepherd, J. Marshall [51] | Global urban land-use and climate impacts | Atlanta, Georgia |
| 2009 |
6. | Virginia H. Dale, Rebecca A. Efroymson, Keith L. Kline [39]. | Land use–climate change–energy | United States, China |
| 2011 |
7. | Hoff, Holger [71] | Water–energy–food | Brazilian Cerrado, Masdar City in UAE, Jordan, Ningxia region in China, Gujarat in India, Blue Nile basin in Ethiopia, Kenya’s Tana River, Australia, Mauritius |
| 2011 |
8. | Phetkeo Poumanyvong, Shinji Kaneko, Shobhakar Dhakal [36] | Urbanization–national transport–road energy use | Low, middle and high-income countries during 1975–2005 |
| 2012 |
9. | Seto, Karen C., Güneralp, Burak, Hutyra, Lucy R [50]. | Urban expansion—biodiversity hotspots—tropical carbon biomass | Eastern Afromontane, the Guinean Forests of West Africa, the Western Ghats and Sri Lanka hotspots |
| 2012 |
10. | Hardy, L., Garrido, A., Juana, L. [66] | Water–energy | Spain |
| 2012 |
11. | FAO [72] | Water, energy, and food | Red River Basin in Vietnam |
| 2014 |
12. | Berkman, M. [73] | Electricity–water | United States |
| 2015 |
13. | Felix Creutzig, Giovanni Baiocchi, Robert Bierkandt, Peter-Paul Pichler, and Karen C. Seto [56]. | Global typology of urban energy and urbanization mitigation wedge | 274 cities representing all city sizes and regions worldwide |
| 2015 |
14. | Eloise M. Biggs, Eleanor Bruce, Bryan Boruff, John M.A. Duncan, Julia Horsley, Natasha Pauli, Kellie McNeill, Andreas Neef, Floris Van Ogtrop, Jayne Curnow, Billy Haworth, Stephanie Duce, Yukihiro Imanari [74] | Water, energy, and food | Indo-Gangetic plains, South-East Asia and Oceania, Caribbean island nations, Mekong Region |
| 2015 |
15. | Golam Rasul [75] | Water–energy–food | South Asia |
| 2016 |
16. | Giupponi, C.; Gain, A.K. [76] | Water–energy–food | Ganges-Brahmaputra-Meghna (GBM) River Basin in Asia and the Po River Basin in Europe |
| 2016 |
17. | Aiko Endo, Izumi Tsurita, Kimberly Burnett, Pedcris M. Orencio [77] | Water–energy–food | Asia, Europe, Oceania, North America, South America, Middle East, and Africa |
| 2017 |
18. | Catherine L. Kling, Raymond W. Arritt, Gray Calhoun, and David A. Keiser [78] | Water–energy–food | US, Brazil, Chesapeake Bay, Kinta River in Malaysia, Iowa |
| 2017 |
19. | Delin Fang, Bin Chen [79] | Water–energy | Beijing |
| 2017 |
20. | Niclas Bieber, Jen Ho Ker, Xiaonan Wang, Charalampos Triantafyllidis, Koen H. van Dam, Rembrandt H.E.M. Koppelaar, Nilay Shah [80] | Water–energy–food | The Greater Accra Metropolitan Area (GAMA), the capital city of Ghana |
| 2018 |
21. | Jiangyu Dai, Shiqiang Wu, Guoyi Han, Josh Weinberg, Xinghua Xie, Xiufeng Wu, Xingqiang Song, Benyou Jia, Wanyun Xue, Qianqian Yang [81] | Water–energy | Taihu Basin |
| 2018 |
22. | Floor Brouwer, Lydia Vamvakeridou-Lyroudia, Eva Alexandri, Ingrida Bremere, Matthew Griffey and Vincent Linderhof [82] | Energy and resource efficiency for policy assessments | Europe, The Netherlands, Latvia, Southwest UK |
| 2018 |
23. | Noruzi, M M and Yazdandoost F [83] | Water–energy | Arid Basin and Kashan Basin |
| 2019 |
24. | Meng, Fanxin Liu, Gengyuan Liang, Sai Su, Meirong Yang, Zhifeng [84] | Energy–water–carbon | France, Spain, Australia, US, UK, China |
| 2019 |
25. | Jill B. Kjellsson and Michael E. Webber [85] | Energy and water nexus | Texas, USA |
| 2015 |
26. | Gary M. Gold, Michael E. Webber [86] | Energy and water nexus | Texas, USA |
| 2015 |
27. | Wen-Tien Tsai [87] | Waste-to-energy (WTE) plants | Kaohsiung Municipality (Taiwan) |
| 2019 |
28. | Catherine I. Birney, Michael C. Jones, and Michael E. Webber [88] | Geothermal powered multieffect brackish water distillation | Texas, USA |
| 2019 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avtar, R.; Tripathi, S.; Aggarwal, A.K.; Kumar, P. Population–Urbanization–Energy Nexus: A Review. Resources 2019, 8, 136. https://doi.org/10.3390/resources8030136
Avtar R, Tripathi S, Aggarwal AK, Kumar P. Population–Urbanization–Energy Nexus: A Review. Resources. 2019; 8(3):136. https://doi.org/10.3390/resources8030136
Chicago/Turabian StyleAvtar, Ram, Saurabh Tripathi, Ashwani Kumar Aggarwal, and Pankaj Kumar. 2019. "Population–Urbanization–Energy Nexus: A Review" Resources 8, no. 3: 136. https://doi.org/10.3390/resources8030136
APA StyleAvtar, R., Tripathi, S., Aggarwal, A. K., & Kumar, P. (2019). Population–Urbanization–Energy Nexus: A Review. Resources, 8(3), 136. https://doi.org/10.3390/resources8030136