Effect of Soft Rock Material Addition on Surface Charge Properties and Internal Force of Aeolian Sandy Soil Particles in the Maowusu Desert
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Setup and Experimental Protocols
2.2. Compound Soil Sample Collection and Determination of Basic Physicochemical Properties
2.3. Determination and Calculation of Surface Electrochemical Properties of Compound Soil
2.4. Calculation of Compound Soil Particle Interaction Forces
2.5. Statistical Analysis
3. Results
3.1. Changes of Compound Soils Surface Electrochemical Properties Under Different Soft Rock Addition Proportions
3.2. Changes of Electrostatic Repulsive Pressure Between Compound Soil Particles Under Different Soft Rock Addition Proportions
3.3. Changes of Van Der Waals Attraction (PvdW) and Surface Hydration Repulsive (Phyd) Between Compound Soil Particles Under Different Soft Rock Addition Proportions
3.4. Changes of DLVO Force Between Compound Soil Particles Under Different Soft Rock Addition Proportions
3.5. Net Interaction Force Across Soft Rock Amendment Ratios in Aeolian Sandy Soils
3.6. Correlation Analysis of Net Interparticle Force with Cation Exchange Capacity (CEC) and Specific Surface Area (SSA) in Soft rock-amended Sandy Soils
4. Discussion
4.1. Influence of Soft Rock Amendment on Interparticle Forces in Aeolian Sandy Soil
4.2. The Relationship Between the Surface Electrochemical Properties and the Internal Force of the Composite Soil Particles After the Addition of Soft Rock Material
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Z.; Han, J. Effect of soft rock amendment on soil hydraulic parameters and crop performance in Mu Us Sandy Land, China. Field Crop. Res. 2018, 222, 85–93. [Google Scholar] [CrossRef]
- Liang, P.; Yang, X.P. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. Catena 2016, 145, 321–333. [Google Scholar] [CrossRef]
- Xie, M.Y.; Ren, Z.P.; Zhang, X.M.; Li, Z.B.; Ma, X.N.; Li, X.Z. Topography and Erosion Differentiation of Slope-gully System in Small Basin in Pisha Sandstone Area. J. Soil Water Conserv. 2022, 36, 112–120. [Google Scholar]
- Sun, Z.; Han, J.; Wang, H. Soft rock for improving crop yield in sandy soil in the mu us desert, china. Arid Land Res. Manag. 2019, 33, 136–154. [Google Scholar]
- Wang, H.Y.; Han, J.C.; Tong, W.; Cheng, J.; Zhang, H.O. Analysis of water and nitrogen use efficiency for maize (Zea mays L.) grown on soft rock and sand compound soil. J.Sci. Food Agric. 2016, 97, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Jiao, G.; Ying, C.S.; Li, J.W. Gravity erosion and lithology in Pisha sandstone in southern Inner Mongolia. J. Groundw. Sci. Eng. 2015, 3, 45–58. [Google Scholar] [CrossRef]
- Han, J.C.; Xie, J.C.; Zhang, Y. Potential role of feldspathic sandstone as a natural water retaining agent in Mu Us Sandy Land, Northwest China. Chin. Geogr. Sci. 2012, 22, 550–555. [Google Scholar] [CrossRef]
- Guo, Z.; Han, J.C.; Xu, Y.; Lu, Y.J.; Li, J. The mineralization characteristics of organic carbon and particle composition analysis in reconstructed soil with different proportions of soft rock and sand. PeerJ 2019, 7, e7707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.O.; Xie, J.C.; Nan, H.P.; Han, J.C.; Wang, N.; Sun, Y.Y.; Zhang, L. Dynamic change characteristics of soil particle composition of soft rock and sand compound soil in Mu Us Sandy Land. Sci. Soil Water Conserv. 2019, 17, 34–40. [Google Scholar]
- Wang, N.; Xie, J.C.; Han, J.C. A Sand Control and Development Model in Sandy Land Based on Mixed Experiments of Arsenic Sandstone and Sand: A Case Study in Mu Us Sandy Land in China. Chin. Geogr. Sci. 2013, 23, 700–707. [Google Scholar] [CrossRef]
- Sun, Z.H.; Han, J.C.; Wang, H.Y.; Zhang, R.Q.; Hu, Y. Use and economic benefit of soft rock as an amendment for sandy soil in Mu Us Sandy Land, China. Arid Land Res. Manag. 2020, 35, 15–31. [Google Scholar]
- Zhang, H.O.; Guo, Z.; Li, J.; Lu, Y.J.; Xu, Y. Improvement of aeolian sandy soil in Mu Us, China with soft montmorillonite clay stone. Agron. J. 2020, 113, 820–828. [Google Scholar] [CrossRef]
- Calero, J.; Ontiveros-Ortega, A.; Aranda, V.; Plaza, I. Humic acid adsorption and its role in colloidal-scale aggregation determined with the zeta potential, surface free energy and the extended-DLVO theory. Eur. J. Soil Sci. 2017, 68, 491–503. [Google Scholar] [CrossRef]
- Ding, W.Q.; Liu, X.M.; Hu, F.N.; Zhu, H.L.; Luo, Y.X.; Li, S.; Li, H. How the particle interaction forces determine soil water infiltration: Specific ion effects. J. Hydrol. 2019, 568, 492–500. [Google Scholar] [CrossRef]
- Liu, J.F.; Hu, F.N.; Xu, C.Y.; Wang, Z.L.; Ma, R.T.; Zhao, S.W.; Liu, G. Comparison of different methods for assessing effects of soil interparticle forces on aggregate stability. Geoderma 2021, 385, 114834. [Google Scholar] [CrossRef]
- Hu, F.N.; Xu, C.Y.; Ma, R.T.; Tu, K.; Zhang, F.B. Biochar application driven change in soil internal forces improves aggregate stability: Based on a two-year field study. Geoderma 2021, 403, 115276. [Google Scholar] [CrossRef]
- Xu, C.Y.; Yu, Z.H.; Li, H. The coupling effects of electric field and clay mineralogy on clay aggregate stability. J. Soils Sediments 2015, 5, 1159–1168. [Google Scholar] [CrossRef]
- Huang, X.R.; Li, H.; Li, S.; Xiong, H.L.; Jiang, X.J. Role of cationic polarization in humus-increased soil aggregate stability. Eur. J. Soil Sci. 2016, 67, 341–350. [Google Scholar] [CrossRef]
- Ma, R.T.; Hu, F.N.; Liu, J.F.; Zhao, S.W. Evaluating the effect of soil internal forces on the stability of natural soil aggregates during vegetation restoration. J. Soils Sediments 2021, 21, 3034–3043. [Google Scholar] [CrossRef]
- Yu, Z.H.; Zhang, J.B.; Zhang, C.Z.; Xin, X.L.; Li, H. The coupling effects of soil organic matter and particle interaction forces on soil aggregate stability. Soil Tillage Res. 2017, 174, 251–260. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis, 3rd edition; China Agricultural Press: Beijing, China, 2008. [Google Scholar]
- Ministry of Agriculture of the People’s Republic of China. Soil Testing Part 6: Method for Determination of Soil Organic Matter: NY/T 1121.6-2006; China Standards Press: Beijing, China, 2006.
- Ministry of Agriculture of the People’s Republic of China. Method for Determination of Soil Carbonate: NY/T 86-1988; China Standards Press: Beijing, China, 1988.
- Li, H.; Hou, J.; Liu, X.M.; Hou, J.; Liu, X.M.; Li, R.; Zhu, H.L.; Wu, L.S. Combined determination of specific surface area and surface charge properties of charged particles from a single experiment. Soil Sci. Soc. Am. J. 2011, 75, 21–28. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, L.; Zhang, Y.; Han, J.C.; Sun, Y.Y.; Zhang, R.Q.; Li, X.X.; Hu, F.N. Internal force mechanism of pisha sandstone as a soil amendment to improve sandy soil structural stability in mu us sandy land. Sustainability 2024, 16, 4415. [Google Scholar] [CrossRef]
- Hu, F.N.; Liu, J.F.; Xu, C.Y.; Wang, Z.L.; Liu, G.; Li, H.; Zhao, S.W. Soil internal forces initiate aggregate breakdown and splash erosion. Geoderma 2018, 320, 43–51. [Google Scholar] [CrossRef]
- Ma, R.; Guo, W.; Hu, F.; Xu, C.; Liu, G.; Zhao, S.; Zheng, F. The effects of soil internal forces on the splash detachment and transport of aggregate fragments in the Mollisols of Northeast China. Eur. J. Soil Sci. 2022, 74, e13273. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Sun, Y.Y.; Li, X.X.; Wang, N.; Wang, X.; Megn, T.T. Interaction force mechanism for the improvement of reclaimed soil aggregate stability in abandoned homestead by different organic-inorganic soil conditioners. Front. Environ. Sci. 2023, 11, 1207887. [Google Scholar] [CrossRef]
- Xu, C.Y.; Zhou, T.T.; Wang, C.L.; Liu, H.Y.; Hu, F.N.; Zhao, S.W.; Geng, Z.C. Aggregation of polydisperse soil colloidal particles: Dependence of Hamaker constant on particle size. Geoderma 2020, 359, 113999. [Google Scholar] [CrossRef]
- Cao, G.; Sun, J.; Chen, M.; Sun, H.; Zhang, G. Co-Transport of Ball-milled Biochar and Cd2+ in Saturated Porous Media. J. Hazard. Mater. 2021, 416, 125725. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z. Effect of Soft Rock Amendment on Soil Moisture and Water Storage in Mu Us Sandy Land. IOP Conf. Ser. Mater. Sci. Eng. 2018, 381, 012044. [Google Scholar] [CrossRef]
- Wang, N.; Xie, J.C.; Han, J.C.; Luo, L.T. A comprehensive framework on land-water resources development in Mu Us Sandy Land. Land Use Policy 2014, 40, 69–73. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, X. Effect of Pisha sandstone on water infiltration of different soils on the Chinese Loess Plateau. J. Arid Land 2016, 8, 331–340. [Google Scholar] [CrossRef]
- Liu, J.F.; Xu, C.Y.; Hu, F.N.; Wang, Z.L.; Ma, R.T.; Zhao, S.W. Effect of soil internal forces on fragment size distributions after aggregate breakdown and their relations to splash erosion. Eur. J. Soil Sci. 2021, 72, 2088–2101. [Google Scholar] [CrossRef]
- Liu, J.F.; Hu, F.N.; Xu, C.Y.; Du, W.; Yu, Z.H.; Zhao, S.W.; Zheng, F.L. Specific ion effects on soil aggregate stability and rainfall splash erosion. Int. Soil Water Conse. 2022, 10, 557–564. [Google Scholar] [CrossRef]
- Resurrection, A.C.; Moldrup, P.; Tuller, M.; Ferré, T.P.A.; Kawamoto, K.; Komatsu, T.; De Jonge, L.W. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents. Water Resour. Res. 2011, 47, 240–250. [Google Scholar] [CrossRef]
- Yu, Z.H.; Li, H.; Liu, X.M.; Xu, C.Y.; Xiong, H.L. Influence of soil electric field on water movement in soil. Soil Tillage Res. 2016, 155, 263–270. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Z.; Han, J.; Wang, H.; Zhang, H.; Yan, J. Long-term effects of soft rock amendment on changes of soil aggregate cementing agents of sandy soil by SEM-EDS. Front. Environ. Sci. 2023, 11, 1207781. [Google Scholar] [CrossRef]
- Liu, J.F.; Wang, Z.L.; Hu, F.N.; Xu, C.Y.; Ma, R.T.; Zhao, S.W. Soil organic matter and silt contents determine soil particle surface electrochemical properties across a long-term natural restoration grassland. Catena 2020, 190, 104526. [Google Scholar] [CrossRef]
- Yu, Z.H.; Zheng, Y.Y.; Zhang, J.B.; Zhang, C.Z.; Ma, D.H.; Chen, L.; Cai, T.Y. Importance of soil interparticle forces and organic matter for aggregate stability in a temperate soil and a subtropical soil. Geoderma 2020, 362, 114088. [Google Scholar] [CrossRef]
Indicators | Determination Method | Determination Standard [22,23] |
---|---|---|
Soil organic matter | K2Cr2O7 oxidation method | NY/T 1121.6-2006 (CN) |
Carbonate content | Gas volumetric method | NY/T 86-1988 (CN) |
v (p):v (S) | SOM (g·kg−1) | CEC (cmol kg−1) | SSA (m2 g−1) | σ0 (c m−2) | E (−109 V m−1) | φ0 (−V) |
---|---|---|---|---|---|---|
0:1 | 5.65 ± 1.95 cd | 4.68 ± 0.04 d | 2.54 ± 0.31 d | 1.80 ± 0.22 a | 25.341 ± 30.73 a | 0.13 ± 0.003 c |
1:5 | 7.76 ± 1.48 bc | 6.45 ± 0.07 c | 7.47 ± 2.12 cd | 0.87 ± 0.24 b | 12.237 ± 33.55 b | 0.12 ± 0.005 b |
1:2 | 9.03 ± 0.90 ab | 6.67 ± 0.08 c | 10.96 ± 0.77 c | 0.59 ± 0.04 bc | 8.311 ± 5.08 bc | 0.11 ± 0.001 a |
1:1 | 11.36 ± 0.90 a | 13.76 ± 0.22 b | 28.71 ± 3.84 b | 0.47 ± 0.07 c | 6.615 ± 10.33 c | 0.11 ± 0.003 a |
1:0 | 3.83 ± 0.88 cd | 17.91 ± 0.18 a | 37.24 ± 4.90 a | 0.47 ± 0.07 c | 6.633 ± 9.67 c | 0.11 ± 0.003 a |
Electrolyte Concentration (mol L−1) | Net Pressure Between Compound Soil Particles (Atm) | ||||
---|---|---|---|---|---|
0:1 | 1:5 | 1:2 | 1:1 | 1:0 | |
1 | 0.09 | −0.06 | −0.18 | −0.30 | −0.63 |
10−1 | 10.92 | 10.31 | 9.85 | 9.43 | 9.10 |
10−2 | 14.76 | 14.11 | 13.60 | 13.14 | 12.82 |
10−3 | 15.19 | 14.53 | 14.02 | 13.55 | 13.23 |
10−5 | 15.24 | 14.58 | 14.06 | 13.59 | 13.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, Y.; Sun, Y.; Zhang, Y.; Wang, N.; Hu, F.; Luo, Y.; Meng, T. Effect of Soft Rock Material Addition on Surface Charge Properties and Internal Force of Aeolian Sandy Soil Particles in the Maowusu Desert. Resources 2025, 14, 116. https://doi.org/10.3390/resources14070116
Liu Z, Zhang Y, Sun Y, Zhang Y, Wang N, Hu F, Luo Y, Meng T. Effect of Soft Rock Material Addition on Surface Charge Properties and Internal Force of Aeolian Sandy Soil Particles in the Maowusu Desert. Resources. 2025; 14(7):116. https://doi.org/10.3390/resources14070116
Chicago/Turabian StyleLiu, Zhe, Yang Zhang, Yingying Sun, Yuliang Zhang, Na Wang, Feinan Hu, Yuhu Luo, and Tingting Meng. 2025. "Effect of Soft Rock Material Addition on Surface Charge Properties and Internal Force of Aeolian Sandy Soil Particles in the Maowusu Desert" Resources 14, no. 7: 116. https://doi.org/10.3390/resources14070116
APA StyleLiu, Z., Zhang, Y., Sun, Y., Zhang, Y., Wang, N., Hu, F., Luo, Y., & Meng, T. (2025). Effect of Soft Rock Material Addition on Surface Charge Properties and Internal Force of Aeolian Sandy Soil Particles in the Maowusu Desert. Resources, 14(7), 116. https://doi.org/10.3390/resources14070116