Integration of Bioresources for Sustainable Development in Organic Farming: A Comprehensive Review
Abstract
1. Introduction
1.1. Definition and Importance of Bioresources in Agriculture
1.2. Overview of Organic Farming Principles and Global Relevance
1.3. Purpose, Objectives, and Significance of the Review
- Categorize and systematically evaluate various bioresources (plant-derived, animal-based, microbial-based) currently utilized in organic agriculture worldwide.
- Critically assess methods and strategies for effectively integrating bioresources into organic farming practices, including the use of biofertilizers, biopesticides, organic amendments, and microbial inoculants.
- Analyze the environmental, ecological, and socioeconomic impacts resulting from the integration of bioresources into organic farming systems.
- Highlight research gaps, challenges, and barriers limiting broader adoption and implementation of bioresource-based practices.
- Provide strategic insights and practical recommendations for researchers, policymakers, and practitioners aiming to optimize bioresource utilization within organic agriculture.
1.4. Gap in Current Knowledge or Recent Trends Justifying the Review
2. Bioresources: An Overview
2.1. Classification of Bioresources: Focus on Plant-Based Resources
2.1.1. Medical and Aromatic Plants
- Azadirachta indica (neem)—widely used for preparing neem oil and neem cake, both effective as natural insect repellents and soil amendments [31].
- Ocimum sanctum (tulsi)—known for its antifungal and antibacterial properties [32].
- Tagetes spp. (marigold)—used for its nematocidal effects, especially in managing root-knot nematodes in vegetable crops [33].
2.1.2. Crop Residues and Green Manures
- Rice straw.
- Wheat stubble.
- Maize husks.
- Legume haulms (e.g., chickpea, pigeon pea).
2.1.3. Agroforestry Resources
- Leaf biomass for mulching and composting (e.g., Leucaena leucocephala, Gliricidia sepium) [43].
- Woody residues for biochar and fuel [44].
- Fodder and shade for livestock and crops [45].
- Natural pest repellents (e.g., Azadirachta indica, Melia azedarach) [46].
2.2. Animal-Based Bioresources: Livestock Manure and Organic Waste
2.2.1. Livestock Manure
- Farmyard manure (FYM)—a mix of dung, urine, and bedding materials.
- Poultry manure—rich in nitrogen and phosphorus, highly effective for short-term nutrient boosts.
- Vermicompost—produced from organic wastes using earthworms, with improved nutrient content and microbial diversity.
2.2.2. Animal Urine and Slurry
2.2.3. Bone Meal, Blood Meal, and Other Animal Wastes
2.3. Microbial-Based Bioresources: Bacteria, Fungi, and Algae
2.3.1. Beneficial Bacteria
- Rhizobium—forms symbiotic nodules with legumes, fixing atmospheric nitrogen into a plant-usable form. It is central to legume-based cropping systems in organic farming [54].
- Azospirillum and Azotobacter—free-living diazotrophs that colonize the rhizosphere of cereals, vegetables, and grasses. They contribute significantly to nitrogen availability and promote root development via phytohormones [55].
- Bacillus spp.—known for their ability to solubilize phosphates and suppress soil-borne pathogens. Certain species (e.g., B. subtilis, B. megaterium) are used as both biofertilizers and biopesticides [56].
- Pseudomonas fluorescens—an important plant-growth-promoting rhizobacterium (PGPR) with strong antagonistic effects against fungal pathogens via the production of antibiotics, siderophores, and hydrolytic enzymes [57].
2.3.2. Beneficial Fungi
- Arbuscular mycorrhizal fungi (AMF). These symbiotic fungi (e.g., Glomus, Acaulospora) colonize plant roots and enhance the uptake of phosphorus, zinc, and copper. They improve drought tolerance, soil aggregation, and root architecture, playing a pivotal role in organic nutrient cycling [58].
- Trichoderma spp.—free-living fungi used widely as biocontrol agents. They inhibit pathogenic fungi like Fusarium, Rhizoctonia, and Pythium through mycoparasitism, enzyme secretion, and the induction of systemic resistance in plants [59].
2.3.3. Algal Bioresources
- Cyanobacteria (e.g., Anabaena, Nostoc, Oscillatoria)—capable of biological nitrogen fixation, especially in wetland and paddy ecosystems. These organisms add organic matter and improve soil microbial activity in rice-based organic systems [60].
- Seaweed extracts (e.g., from Ascophyllum nodosum, Sargassum, Gracilaria)—widely used as bio-stimulants to promote germination, flowering, stress tolerance, and yield. They contain cytokinins, betaines, and polysaccharides that enhance plant metabolism and immunity [61].
2.4. Functional and Process-Based Classification of Bioresources in Organic Farming
2.4.1. Primary Bioresources
- Agricultural crops: Cereal grains, legumes, oilseeds, fruits, and vegetables grown for direct consumption or soil improvement (e.g., green manure crops).
- Livestock: Animals raised for milk, meat, or fiber, which also contribute manure and urine for composting or biogas systems.
- Marine resources: Fish, seaweed, and other aquatic organisms harvested from freshwater or marine systems, often used in organic fertilizers or biostimulants.
- Forestry products: Timber, leaf litter, and wood residues used as mulch, bedding, or compost ingredients.
2.4.2. Secondary Bioresources
- Agricultural residues: Crop stalks, husks, straw, animal manure, and post-harvest plant biomass.
- Industrial residues: Oilseed cakes (e.g., neem, mustard), sugarcane bagasse, fruit peels, and press mud from agro-processing industries.
- Microorganisms: Beneficial microbes such as Rhizobium, Azospirillum, Trichoderma, and Bacillus strains, used as biofertilizers and biopesticides.
2.4.3. Tertiary Bioresources
- Spent mushroom substrate: Remnants of mushroom production rich in organic matter.
- Rice husk ash: A by-product of biomass combustion, often used as a soil conditioner.
- De-oiled cakes and fibrous residues: Remaining material after oil extraction, used as slow-release fertilizers and natural pest repellents.
- Sawdust and wood shavings: Carbon-rich inputs for compost or animal bedding.
2.4.4. Quaternary Bioresources
- Biogas slurry: The nutrient-rich digestate produced from the anaerobic digestion of animal or kitchen waste.
- Composted municipal organic waste (OFMSW): Treated and stabilized organic waste used as compost.
- Treated greywater or blackwater: In systems employing constructed wetlands or ecological sanitation, this can be reused for non-edible crops or biomass generation.
- Household kitchen waste compost: Frequently reused in peri-urban organic gardens when free from contaminants.
3. Integration of Bioresources in Organic Farming
3.1. Biofertilizers: Microbial Inoculants for Sustainable Nutrient Management
3.1.1. Rhizobium: Symbiotic Nitrogen Fixation in Legumes
3.1.2. Azotobacter: Free-Living Nitrogen Fixers for Non-Legumes
3.1.3. Azospirillum: Associative Symbiosis with Grasses and Cereals
3.1.4. Mycorrhiza: Fungal Symbionts for Enhanced Nutrient Uptake
3.2. Biopesticides and Bio-Control Agents: Plant- and Microbial-Derived Defenses in Organic Farming
3.2.1. Botanical Extracts: Plant-Based Insecticides and Fungicides
3.2.2. Microbial-Based Biopesticides: Bacteria and Fungi as Natural Enemies
3.2.3. Efficacy and Limitations of Biopesticides in Organic Systems
3.2.4. Integrative Role in Organic Agroecosystems
3.3. Organic Amendments
3.3.1. Composting: Stabilizing Organic Matter for Soil Health
3.3.2. Vermicomposting: Enhancing Nutrient Density Through Earthworms
3.3.3. Manure Management: Recycling Livestock Waste Responsibly
3.3.4. Biocyclic Vegan Humus Soil: A Soil Amendment Rooted in Ethical and Ecological Principles
- Soil structure through stable humic substances.
- Water retention due to high porosity and colloidal properties.
- Microbial activity via beneficial fungi and bacteria promoted by the substrate.
3.3.5. Biochar Integration: Carbon-Rich Amendment for Soil Regeneration
3.3.6. Toward a Synergistic Approach in Organic Amendment Management
3.4. Agro-Biodiversity and Seed Management: Indigenous Seed Systems, Conservation, and Resilient Agriculture
3.4.1. Indigenous Seed Systems: Carriers of Genetic and Cultural Resilience
3.4.2. Conservation of Agro-Biodiversity in Organic Farming
3.4.3. Agro-Biodiversity and Resilience in Organic Systems
3.4.4. Challenges and Opportunities
3.5. Bioenergy and Circular Economy: Valorizing Agricultural Wastes in Organic Farming Systems
3.5.1. Biofuel Production from Agricultural Wastes
3.5.2. Biogas Production from Animal Waste and Organic Residues
3.5.3. Circular Economy Approaches in Organic Farming
- Integrated crop–livestock systems, where animal manure fertilizes crops, and crop residues feed livestock or are composted.
- Agro-waste valorization, transforming pruning biomass, spoiled produce, or food processing by-products into feed, compost, or energy.
- On-farm biorefineries, which combine composting, vermicomposting, biogas, and possibly small-scale fermentation units to produce a suite of bio-inputs and energy carriers.
- Circular input substitution, replacing imported or high-carbon footprint inputs with farm-derived materials—such as replacing plastic mulch with straw, or chemical sprays with botanical formulations.
4. Evaluation of Bioresources in Organic Farming
4.1. Soil Fertility and Nutrient Availability Indices
- (a)
- Soil Organic Carbon (SOC)
- (b)
- Carbon-to-Nitrogen (C/N) Ratio
- (c)
- Microbial Biomass Carbon and Nitrogen (MBC, MBN)
4.2. Productivity and Nutrient Use Efficiency Indices
- (a)
- Agronomic Efficiency (AE)
- (b)
- Partial Factor Productivity (PFP)
- (c)
- Nutrient Use Efficiency (NUE)
4.3. Soil Biological Activity Indices
- (a)
- Enzymatic Activity (e.g., Dehydrogenase, Urease, Phosphatase)
- (b)
- Microbial Quotient (qCO2)
4.4. Competition and Complementarity Indices (For Intercropping Systems)
- (a)
- Land Equivalent Ratio (LER)
- (b)
- Aggressivity Index (AI)
- (c)
- Relative Yield Total (RYT)
4.5. Sustainability and Soil Health Indices
- (a)
- Soil Quality Index (SQI)
- (b)
- Biodiversity Index (Shannon–Weaver Index)
5. A Site-Specific Diagnostic Framework for Bioresource Optimization in Organic Farming
5.1. Rationale for Diagnostic Systems
5.2. Framework Components
- Agroecological Zoning (AEZ):Identifying homogeneous zones based on climate, soil type, and topography helps pre-screen bioresources suitable for those areas. AEZ approaches have been used effectively in sustainable land-use planning and can be adapted to organic systems.
- Soil Health Diagnostics:A detailed analysis of physical, chemical, and biological soil properties—including pH, organic carbon, microbial biomass, and enzyme activity—can inform what types of bioresources (e.g., compost, green manure, microbial inoculants) are most appropriate.
- Nutrient Budgeting Tools:Mass-balance tools such as the Nutrient Expert (modified for organic systems) and the Organic Nutrient Management Tool (ONMT) estimate nutrient flows and help match bioresource inputs with crop needs while preventing over- or under-application.
- Bioresource Suitability Mapping:Locally available bioresources (e.g., cow dung, poultry litter, leguminous biomass) can be matched with soil fertility constraints and crop demand. This could use GIS overlays of resource availability and farm typology data.
- Monitoring and Feedback Loops:Field-based sensor data (e.g., NDVI, soil moisture) and participatory monitoring by farmers should be incorporated to iteratively adjust management practices. Systems like SPAD meters for nitrogen assessment or smartphone-based soil health apps could be scaled for this purpose.
5.3. Implementation Challenges and Opportunities
6. Economic, Energy, and Environmental Efficiency of Bioresource Integration
6.1. Economic Viability and Cost–Benefit Considerations
6.2. Energy Efficiency and Resource Use
6.3. Environmental Impacts and Life-Cycle Benefits
7. Benefits and Challenges of Integrating Bioresources into Organic Farming
7.1. Ecological and Environmental Benefits
7.1.1. Soil Health Enhancement
7.1.2. Biodiversity Conservation and Functional Enhancement
7.1.3. Climate Resilience and Carbon Sequestration
7.1.4. Pollution Mitigation and Ecological Restoration
7.2. Economic Viability: Cost–Benefit Analyses and Market Perspectives
7.2.1. Cost–Benefit Dynamics of Bioresource Utilization
7.2.2. Market Access and Organic Premiums
7.2.3. Employment and Rural Development Potential
7.2.4. Limitations and Economic Challenges
7.3. Social Sustainability: Impact on Rural Livelihoods and Employment
7.3.1. Rural Employment Generation
7.3.2. Women’s Empowerment and Gender Inclusion
7.3.3. Community Resilience and Knowledge Networks
7.3.4. Challenges to Social Sustainability
7.4. Challenges of Integrating Bioresources into Organic Farming
7.4.1. Technical Challenges
7.4.2. Socioeconomic Barriers
7.4.3. Regulatory and Institutional Constraints
- The development of locally adapted, shelf-stable bio-inputs with consistent field efficacy;
- Strengthening of extension services and farmer field schools focused on bioresource management;
- Investment in rural infrastructure and community processing facilities for compost, vermicompost, and biopesticides;
- Streamlining and democratizing organic certification and quality regulation for bio-inputs;
- Promoting inclusive policies that recognize indigenous practices and incentivize circular, low-input agriculture.
8. Recent Advances and Innovations
8.1. New Biofertilizer Strains
8.2. Biotechnology Applications
8.3. Precision Organic Farming
8.4. Integration with Agroecology and Regenerative Practices
9. Future Directions and Recommendations
9.1. Research Gaps and Future Research Priorities
9.2. Policy Recommendations for Promoting Bioresource Use
9.3. Strategies for Scaling Up Organic Farming with Bioresources
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lakshmi, M.; Lekshmi, S.; Castillo-Godina, R.; Campos-Muzquiz, L.; Rodriguez-Herrera, R.; Biju, S.; Krishnan, R.; Swapna, T. Bioresources and Diversity. In Conservation and Sustainable Utilization of Bioresources; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–37. [Google Scholar]
- Kumar Sarangi, P.; Subudhi, S.; Bhatia, L.; Saha, K.; Mudgil, D.; Prasad Shadangi, K.; Srivastava, R.K.; Pattnaik, B.; Arya, R.K. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environ. Sci. Pollut. Res. 2023, 30, 8526–8539. [Google Scholar] [CrossRef] [PubMed]
- Taneja, A.; Sharma, R.; Khetrapal, S.; Sharma, A.; Nagraik, R.; Venkidasamy, B.; Ghate, M.N.; Azizov, S.; Sharma, S.; Kumar, D. Value addition employing waste bio-materials in environmental remedies and food sector. Metabolites 2023, 13, 624. [Google Scholar] [CrossRef]
- Fritsche, U.; Brunori, G.; Chiaramonti, D.; Galanakis, C.; Hellweg, S.; Matthews, R.; Panoutsou, C. Future Transitions for the Bioeconomy Towards Sustainable Development and a Climate-Neutral Economy—Knowledge Synthesis Final Report; Publications Office of the European Union: Luxembourg, 2020; Volume 10, p. 667966. [Google Scholar]
- Ashokkumar, V.; Flora, G.; Venkatkarthick, R.; SenthilKannan, K.; Kuppam, C.; Stephy, G.M.; Kamyab, H.; Chen, W.-H.; Thomas, J.; Ngamcharussrivichai, C. Advanced technologies on the sustainable approaches for conversion of organic waste to valuable bioproducts: Emerging circular bioeconomy perspective. Fuel 2022, 324, 124313. [Google Scholar] [CrossRef]
- FAO. Global Map of Salt Affected Soils Version 1.0; FAO: Rome, Italy, 2021. [Google Scholar]
- Mridha, N.; Nayak, D.; Yadav, A.; Mondal, T.; Ghosh, R.K.; Bhowmick, M.; Singha, A.; Ray, D.; Manjunatha, B.; Das, A. Eco-friendly sustainable farming: Enhancing summer tomato (Lycopersicon esculentum mill.) yield with jute non-woven agro textile Mulch. Heliyon 2025, 11, e42039. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, J. Harnessing Bioproducts for a Sustainable Circular Economy. In Value Addition and Utilization of Lignocellulosic Biomass: Through Novel Technological Interventions; Springer: Berlin/Heidelberg, Germany, 2025; pp. 263–293. [Google Scholar]
- Kumar, S.; Mukherjee, A.; Dutta, J. Biopolymer-Based Food Packaging: Innovations and Technology Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Riseh, R.S. Advancing agriculture through bioresource technology: The role of cellulose-based biodegradable mulches. Int. J. Biol. Macromol. 2024, 255, 128006. [Google Scholar]
- Sameera, V.S.; Rao, A.R.; Srividya, R.; Boppena, K.; Rani, R.P. From Farm to Fuel: Animal-Based Bioenergy and Bioproducts. In From Waste to Wealth; Springer: Berlin/Heidelberg, Germany, 2024; pp. 247–279. [Google Scholar]
- Ram, H.; Garg, K.; Meena, R.; Saxena, A. Nutrient Management Practices in Organic Farming; Natural Farming: Basics and Application, 41; FAO: Rome, Italy, 2020. [Google Scholar]
- Ayamba, B.E.; Abaidoo, R.C.; Opoku, A.; Ewusi-Mensah, N. Enhancing the Fertilizer Value of Cattle Manure Using Organic Resources for Soil Fertility Improvement: A Review. J. Bioresour. Management. Manag. 2021, 8, 89–107. [Google Scholar] [CrossRef]
- Samantaray, A.; Chattaraj, S.; Mitra, D.; Ganguly, A.; Kumar, R.; Gaur, A.; Mohapatra, P.K.D.; de Los Santos-Villalobos, S.; Rani, A.; Thatoi, H. Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. Curr. Res. Microb. Sci. 2024, 7, 100251. [Google Scholar] [CrossRef]
- Hajji-Hedfi, L.; Ibrahim, D.S.; Othmen, S.B.; El-Abeid, S.E.; Hlaoua, W.; Mosa, M.A.; Rhouma, A.; Riad, S.N.; Ghareeb, S.; El-Deriny, M.M. Production of Microbial Biostimulants as a Response to the Modern Agricultural Need for Productivity and Plant Health. In Microbial Biostimulants; Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 31–78. [Google Scholar]
- Kumar, A.; Verma, J.P. The role of microbes to improve crop productivity and soil health. In Ecological Wisdom Inspired Restoration Engineering; Springer: Singapore, 2019; pp. 249–265. [Google Scholar]
- Battilani, A. Limited access to resources: Challenges or opportunities? In Proceedings of the XIII International Symposium on Processing Tomato 1081, Sirmione, Italy, 8 June 2014; ISHS: Korbeek-Lo, Belgium, 2014; pp. 27–40. [Google Scholar]
- Sekhar, M.; Rastogi, M.; Rajesh, C.; Saikanth, D.; Rout, S.; Kumar, S.; Patel, A.K. Exploring traditional agricultural techniques integrated with modern farming for a sustainable future: A review. J. Sci. Res. Rep. 2024, 30, 185–198. [Google Scholar] [CrossRef]
- Willer, H.; Lernoud, J. Research Institute of Organic Agriculture FiBL and IFOAM—Organics International; Frick and Bonn: Rheinbreitbach, Germany, 2019; pp. 217–254. [Google Scholar]
- Geier, B. IFOAM and the history of the International Organic Movement. In Organic Farming: An International History; CABI: Wallingford, UK, 2007; pp. 175–186. [Google Scholar]
- IFOAM. Principles of Organic Agriculture; International Federation of Organic Agriculture Movements: Bonn, Germany, 2005; Available online: https://www.ifoam.bio/why-organic/shaping-agriculture/four-principles-organic (accessed on 22 April 2025).
- Willer, H.; Trávníček, J.; Schlatter, B. The World of Organic Agriculture. Statistics and Emerging Trends 2025; International Federation of Organic Agriculture Movements: Bonn, Germany, 2025. [Google Scholar]
- Meemken, E.-M.; Qaim, M. Organic agriculture, food security, and the environment. Annu. Rev. Resour. Econ. 2018, 10, 39–63. [Google Scholar] [CrossRef]
- Zikeli, S.; Rembiałkowska, E.; Załęcka, A.; Badowski, M. Organic farming and organic food quality: Prospects and limitations. In Sustainable Food Production Includes Human and Environmental Health; Springer: Dordrecht, The Netherlands, 2014; pp. 85–164. [Google Scholar]
- Bhardwaj, S.; Pandey, P.K.; Bansal, S. Global sustainable organic product movement: Embracing production and consumption shifts. Int. J. Glob. Environ. Issues 2024, 23, 59–74. [Google Scholar] [CrossRef]
- Selvan, T.; Panmei, L.; Murasing, K.K.; Guleria, V.; Ramesh, K.R.; Bhardwaj, D.; Thakur, C.; Kumar, D.; Sharma, P.; Digvijaysinh Umedsinh, R. Circular economy in agriculture: Unleashing the potential of integrated organic farming for food security and sustainable development. Front. Sustain. Food Syst. 2023, 7, 1170380. [Google Scholar] [CrossRef]
- Patel, N.; Feofilovs, M.; Blumberga, D. Evaluation of bioresource value models: Sustainable development in the agriculture biorefinery sector. J. Agric. Food Res. 2022, 10, 100367. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Roy, K.; Bhattacharyya, R.; Nazir, M.; Saha, A.; Saha, D. Sustainable Treatment of Agro-wastes for the Development of Novel Products Especially Bioenergy: Prospects and Constraints. In Agro-Waste to Microbe Assisted Value Added Product: Challenges and Future Prospects: Recent Developments in Agro-Waste Valorization Research; Springer: Berlin/Heidelberg, Germany, 2024; pp. 229–245. [Google Scholar]
- Upadhyay, R.K. Therapeutic and insecticidal potential of plant terpenes: A review. Int. J. Green Pharm. (IJGP) 2022, 16, 14. [Google Scholar]
- Utreja, D.; Kaur, K.; Dhillon, N.; Singh, S. Natural Product Chemistry in Agriculture. In Green Chemistry in Agriculture and Food Production; CRC Press: Boca Raton, FL, USA, 2023; pp. 1–28. [Google Scholar]
- Latini, A.; Mariani, S.; Tulli, R.; Nicoletti, M. Neem Oilseed Cake: A Multipurpose Product for Agricultural Biofertilization and Nematicidal Activity. In Oilseed Cake for Nematode Management; CRC Press: Boca Raton, FL, USA, 2023; pp. 1–14. [Google Scholar]
- Mandal, A.K.; Poudel, M.; Neupane, N.P.; Verma, A. Phytochemistry, pharmacology, and applications of Ocimum sanctum (Tulsi). In Edible Plants in Health and Diseases: Volume II: Phytochemical and Pharmacological Properties; Springer: Berlin/Heidelberg, Germany, 2022; pp. 135–174. [Google Scholar]
- Karakas, M.; Bolukbasi, E. A review: Using marigolds (Tagetes spp.) as an alternative to chemical nematicides for nematode management. Int. J. Adv. Eng. Manag. Sci. 2019, 5, 556–560. [Google Scholar] [CrossRef]
- Lengai, G.M.; Mbega, E.R.; Muthomi, J.W. Pesticidal and Medicinal Value of Turmeric and Ginger in Tanzania and Their Antifungal Activity against Phytopathogens. J. Biosci. Med. 2025, 13, 287–308. [Google Scholar] [CrossRef]
- Samuel, A.T.; Ariyo, A.L. Garlic Products For Sustainable Organic Crop Protection. In Organic Farming for Sustainable Development; Apple Academic Press: Palm Bay, FL, USA, 2022; pp. 165–182. [Google Scholar]
- Priya, K.; Rani, J.; Gwal, S. Transforming agricultural residues to value-added products: Waste to wealth. In Sustainable Management of Agro-Food Waste; Elsevier: Amsterdam, The Netherlands, 2025; pp. 69–85. [Google Scholar]
- Fu, B.; Chen, L.; Huang, H.; Qu, P.; Wei, Z. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavailab. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Bista, B.; Dahal, S. Cementing the organic farming by green manures. Int. J. Appl. Sci. Biotechnol. 2018, 6, 87–96. [Google Scholar] [CrossRef]
- Pradhan, G.; Meena, R.S.; Kumar, S.; Jhariya, M.K.; Khan, N.; Shukla, U.N.; Singh, A.K.; Sheoran, S. Legumes for eco-friendly weed management in agroecosystem. In Advances in Legumes for Sustainable Intensification; Elsevier: Amsterdam, The Netherlands, 2022; pp. 133–154. [Google Scholar]
- Daimon, H. Traits of the genus Crotalaria used as a green manure legume on sustainable cropping systems. Jpn. Agric. Res. Q. JARQ 2006, 40, 299–305. [Google Scholar] [CrossRef]
- Kruger, D.; Fourie, J.; Malan, A.P. Control potential of Brassicaceae cover crops as green manure and their host status for Meloidogyne javanica and Criconemoides xenoplax. S. Afr. J. Enol. Vitic. 2015, 36, 165–174. [Google Scholar] [CrossRef]
- Eugui, D.; Escobar, C.; Velasco, P.; Poveda, J. Glucosinolates as an effective tool in plant-parasitic nematodes control: Exploiting natural plant defenses. Appl. Soil Ecol. 2022, 176, 104497. [Google Scholar] [CrossRef]
- Arya, C. Growth, Green Biomass Production and Crop Interaction of Selected Trees and Shrubs on Wetland Paddy Bunds; Department of Siviculture and Agroforestry, College of Forestry, Vellanikkara: Thrissur, India, 2023. [Google Scholar]
- Stavi, I. Biochar use in forestry and tree-based agro-ecosystems for increasing climate change mitigation and adaptation. Int. J. Sustain. Dev. World Ecol. 2013, 20, 166–181. [Google Scholar] [CrossRef]
- Chavan, S.; Uthappa, A.; Chichaghare, A.; Kumar, D.; Sirohi, C.; Kakade, V.D. Agroforestry Systems for Ecosystem Services in India. In Sustainable Management and Conservation of Environmental Resources in India; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 105–147. [Google Scholar]
- Chandel, R.S.; Sharma, B. Declining Himalayan Bio-Resources–A Threat to Farmer’s Livelihood. Short Rotation Forestry and Agroforestry: An Exchange of Experience Between CDM Countries and Europe; Marchesi di Barolo: Barolo, Italy, 2011; pp. 67–75. [Google Scholar]
- Muschler, R.G. Agroforestry: Essential for sustainable and climate-smart land use. Trop. For. Handb. 2016, 2, 2013–2116. [Google Scholar]
- Reddy, P.P. Sustainable Intensification of Crop Production; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Rayne, N.; Aula, L. Livestock manure and the impacts on soil health: A review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Kimani, S.; Lekasi, J. Managing Manures Throughout their Production Cycle Enhances their Usefulness as Fertilisers: A. In Managing Nutrient Cycles to Sustain Soil Fertility in Sub-Saharan Africa; Academy Science Publishers (ASP): Brussels, Belgium; Tropical Soil Biology and Fertility Institute of CIAT: Nairobi, Kenya, 2004; p. 187. [Google Scholar]
- Christensen, M.L.; Christensen, K.V.; Sommer, S.G. Solid–liquid separation of animal slurry. In Animal Manure Recycling: Treatment and Management; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 105–130. [Google Scholar]
- Yunta, F.; Di Foggia, M.; Bellido-Díaz, V.; Morales-Calderón, M.; Tessarin, P.; López-Rayo, S.; Tinti, A.; Kovács, K.; Klencsár, Z.n.; Fodor, F. Blood meal-based compound. Good choice as iron fertilizer for organic farming. J. Agric. Food Chem. 2013, 61, 3995–4003. [Google Scholar] [CrossRef]
- Bhargava, P.; Gupta, N.; Kumar, R.; Vats, S. Plants and microbes: Bioresources for sustainable development and biocontrol. In Plant Microbe Symbiosis; Springer: Cham, Switzerland, 2020; pp. 153–176. [Google Scholar]
- Khan, M.N.; Ijaz, M.; Ali, Q.; Ul-Allah, S.; Sattar, A.; Ahmad, S. Biological nitrogen fixation in nutrient management. In Agronomic Crops: Volume 2: Management Practices; Springer: Singapore, 2019; pp. 127–147. [Google Scholar]
- Jehani, M.; Singh, S.; Kumar, D.; Kumar, G. Azospirillum—A free-living nitrogen-fixing bacterium. In Rhizobiome; Elsevier: Amsterdam, The Netherlands, 2023; pp. 285–308. [Google Scholar]
- Abuhena, M.; Zhakypbek, Y.; Yerlan, U.; Aben, A.; Kamarkhan, Z.; Allakhverdiev, S.I.; Assemgul, S.K.; Al Rashid, J.; Karim, M.D.; Kuanysh, T.T. An Overview of Bacillus Species in Agriculture for Growth Promotion, Biocontrol and Dry Tolerance. ES Food Agrofor. 2024, 18, 1321. [Google Scholar] [CrossRef]
- Panpatte, D.G.; Jhala, Y.K.; Shelat, H.N.; Vyas, R.V. Pseudomonas fluorescens: A promising biocontrol agent and PGPR for sustainable agriculture. In Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 1: Research Perspectives; Springer: New Delhi, India, 2016; pp. 257–270. [Google Scholar]
- Bilalis, D.; Angelopoulou, F.; Travlos, I.; Antoniadis, A.; Ntatsi, G.; Lazaridi, E.; Savvas, D.; Karkanis, A. Effect of Organic and Mineral Fertilization on Root Growth and Mycorrhizal Colonization of Pea Crops (Pisum sativum L.). Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2015, 72, 2. [Google Scholar] [CrossRef]
- Abhishek Tripathi, A.T.; Neeta Sharma, N.S.; Nidhi Tripathi, N.T. Biological control of plant diseases: An overview and the Trichoderma system as biocontrol agents. In Management of Fungal Plant Pathogens; CABI: Wallingford, UK, 2010; pp. 121–137. [Google Scholar]
- Mishra, A.; Rajput, S.; Gupta, P.S.; Goyal, V.; Singh, S.; Sharma, S.; Shukla, S.; Singh, A.; Shukla, K.; Varma, A. Role of cyanobacteria in Rhizospheric nitrogen fixation. In Soil Nitrogen Ecology; Springer: Berlin/Heidelberg, Germany, 2021; pp. 497–519. [Google Scholar]
- Chaturvedi, S.; Kulshrestha, S.; Bhardwaj, K. Role of seaweeds in plant growth promotion and disease management. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 217–238. [Google Scholar]
- Ankit; Bordoloi, N.; Tiwari, J.; Kumar, S.; Korstad, J.; Bauddh, K. Efficiency of algae for heavy metal removal, bioenergy production, and carbon sequestration. In Emerging Eco-Friendly Green Technologies for Wastewater Treatment; Springer: Singapore, 2020; pp. 77–101. [Google Scholar]
- Chaudhary, I.J.; Neeraj, A.; Siddiqui, M.A.; Singh, V. Nutrient management technologies and the role of organic matrix-based slow-release biofertilizers for agricultural sustainability: A review. Agric. Rev. 2020, 41, 1–13. [Google Scholar] [CrossRef]
- Saif, S.; Abid, Z.; Ashiq, M.F.; Altaf, M.; Ashraf, R.S. Biofertilizer formulations. In Biofertilizers: Study and Impact; Scrivener publishing: Austin, TX, USA, 2021; pp. 211–256. [Google Scholar]
- Denton, M.D.; Phillips, L.A.; Peoples, M.B.; Pearce, D.J.; Swan, A.D.; Mele, P.M.; Brockwell, J. Legume inoculant application methods: Effects on nodulation patterns, nitrogen fixation, crop growth and yield in narrow-leaf lupin and faba bean. Plant Soil 2017, 419, 25–39. [Google Scholar] [CrossRef]
- Meshram, S.U.; Shende, S. Total nitrogen uptake by maize with Azotobacter inoculation. Plant Soil 1982, 69, 275–280. [Google Scholar] [CrossRef]
- Ranjan, A.; Rajput, V.D.; Prazdnova, E.V.; Gurnani, M.; Sharma, S.; Bhardwaj, P.; Shende, S.S.; Mandzhieva, S.S.; Sushkova, S.; Minkina, T. Augmenting abiotic stress tolerance and root architecture: The function of phytohormone-producing PGPR and their interaction with nanoparticles. S. Afr. J. Bot. 2024, 167, 612–629. [Google Scholar] [CrossRef]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Aggarwal, A.; Kadian, N.; Tanwar, A.; Yadav, A.; Gupta, K. Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. J. Appl. Nat. Sci. 2011, 3, 340. [Google Scholar] [CrossRef]
- Kakabouki, I.; Tataridas, A.; Mavroeidis, A.; Kousta, A.; Karydogianni, S.; Zisi, C.; Kouneli, V.; Konstantinou, A.; Folina, A.; Konstantas, A. Effect of colonization of Trichoderma harzianum on growth development and CBD content of hemp (Cannabis sativa L.). Microorganisms 2021, 9, 518. [Google Scholar] [CrossRef]
- Nie, W.; He, Q.; Guo, H.; Zhang, W.; Ma, L.; Li, J.; Wen, D. Arbuscular Mycorrhizal Fungi: Boosting Crop Resilience to Environmental Stresses. Microorganisms 2024, 12, 2448. [Google Scholar] [CrossRef]
- Bagyaraj, D.; Sharma, M.; Maiti, D. Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr. Sci. 2015, 108, 1288–1293. [Google Scholar]
- Chakraborty, B.; Sarkar, I. Quality analysis and characterization of Panchagavya, Jeevumrutha and Sasyamrutha. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2018–2026. [Google Scholar] [CrossRef]
- Vlaiculescu, A.; Varrone, C. Sustainable and eco-friendly alternatives to reduce the use of pesticides. In Pesticides in the Natural Environment; Elsevier: Amsterdam, The Netherlands, 2022; pp. 329–364. [Google Scholar]
- Almadiy, A.A.; Al-Ghamdi, M.S.; Abd Al Galil, F.M.; Dar, S.A. Azadirachtin from Neem (Azadirachta indica): Efficacy and Mechanisms Against Insects and Diseases. In Natural Pesticides and Allelochemicals; CRC Press: Boca Raton, FL, USA, 2025; pp. 261–278. [Google Scholar]
- Lengai, M.W. Efficacy of Plant Extracts and Antagonistic Fungi as Alternatives to Synthetic Pesticides in Management of Tomato Pests and Diseases. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2016. [Google Scholar]
- Seenivasagan, R.; Babalola, O.O. Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product. Biology 2021, 10, 1111. [Google Scholar] [CrossRef]
- Lyubenova, A.; Rusanova, M.; Nikolova, M.; Slavov, S.B. Plant extracts and Trichoderma spp: Possibilities for implementation in agriculture as biopesticides. Biotechnol. Biotechnol. Equip. 2023, 37, 159–166. [Google Scholar] [CrossRef]
- Salimi, F.; Hamedi, J. Biopesticides: Microbes for agricultural sustainability. In Soil Microbiomes for Sustainable Agriculture: Functional Annotation; Springer: Cham, Switzerland, 2021; pp. 471–501. [Google Scholar]
- Golijan-Pantović, J.; Sečanski, M. Biopesticides in organic agriculture. Contemp. Agric. 2022, 71, 141–154. [Google Scholar] [CrossRef]
- Agboola, A.R.; Okonkwo, C.O.; Agwupuye, E.I.; Mbeh, G. Biopesticides and conventional pesticides: Comparative review of mechanism of action and future perspectives. AROC Agric. 2022, 1, 14–32. [Google Scholar] [CrossRef]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Malhi, G.S.; Kaur, M.; Singh, G.; Jatav, H.S. Use of organic soil amendments for improving soil ecosystem health and crop productivity. In Ecosystem Services; Nova Science Publishers, Inc.: New York, NY, USA, 2022. [Google Scholar]
- Ahmed, T.; Noman, M.; Qi, Y.; Shahid, M.; Hussain, S.; Masood, H.A.; Xu, L.; Ali, H.M.; Negm, S.; El-Kott, A.F. Fertilization of microbial composts: A technology for improving stress resilience in plants. Plants 2023, 12, 3550. [Google Scholar] [CrossRef] [PubMed]
- Amuah, E.E.Y.; Fei-Baffoe, B.; Sackey, L.N.A.; Douti, N.B.; Kazapoe, R.W. A review of the principles of composting: Understanding the processes, methods, merits, and demerits. Org. Agric. 2022, 12, 547–562. [Google Scholar] [CrossRef]
- Vijayabharathi, R.; Sathya, A.; Gopalakrishnan, S. Plant growth-promoting microbes from herbal vermicompost. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Springer: Cham, Switzerland, 2015; pp. 71–88. [Google Scholar]
- Garg, J.; Rakshit, A. Compost Tea: An Emerging Nature-Based Supplement Strengthening Options for Durable Agriculture. J. Soil Sci. Plant Nutr. 2024, 24, 8075–8098. [Google Scholar] [CrossRef]
- Sande, T.J.; Tindwa, H.J.; Alovisi, A.M.T.; Shitindi, M.J.; Semoka, J.M. Enhancing sustainable crop production through integrated nutrient management: A focus on vermicompost, bio-enriched rock phosphate, and inorganic fertilisers—A systematic review. Front. Agron. 2024, 6, 1422876. [Google Scholar] [CrossRef]
- Maj, I. Significance and challenges of poultry litter and cattle manure as sustainable fuels: A review. Energies 2022, 15, 8981. [Google Scholar] [CrossRef]
- Banerjee, M.; Saha, R. Biodynamic Farming and Organic Farming: Traditional Approach for Resource Conservation. In Conservation Agriculture and Climate Change; CRC Press: Boca Raton, FL, USA, 2022; pp. 189–210. [Google Scholar]
- Ijaz, M.U.; Akbar, A.; Eman, R.; Hayat, M.F.; Naz, H.; Ashraf, A. Mitigating Nutrient Pollution from Livestock Manure: Strategies for Sustainable Management. In Agricultural Nutrient Pollution and Climate Change: Challenges and Opportunities; Springer: Berlin/Heidelberg, Germany, 2025; pp. 165–187. [Google Scholar]
- Folina, A.; Tsementzi, K.; Stavropoulos, P.; Mavroeidis, A.; Kakabouki, I.; Bilalis, D. Impact of salinity and fertilization on soil properties, and root development in fenugreek (Trigonella foenum-graecum) cultivation. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13868. [Google Scholar] [CrossRef]
- Anders, A.; Eisenbach, J. Biocyclic-vegan agriculture. Grow. Green Int. 2017, 39, 32–34. [Google Scholar]
- Eisenbach, L.D.; Folina, A.; Zisi, C.; Roussis, I.; Tabaxi, I.; Papastylianou, P.; Kakabouki, I.; Efthimiadou, A.; Bilalis, D.J. Effect of biocyclic humus soil on yield and quality parameters of processing tomato (Lycopersicon esculentum Mill.). Bull. UASVM Hortic. 2019, 76, 47–52. [Google Scholar]
- Anders, A.; Bonzheim, A.; Gieseke, A.; Schulz, F. The Biocyclic Vegan Growers’ Guide; Biocyclic Vegan International: Berlin, Germany, 2023. [Google Scholar]
- Rahman, G.M.; Rahman, M.M.; Alam, M.S.; Kamal, M.Z.; Mashuk, H.; Datta, R.; Meena, R.S. Biochar and organic amendments for sustainable soil carbon and soil health. In Carbon and Nitrogen Cycling in Soil; Springer: Singapore, 2020; pp. 45–85. [Google Scholar]
- Dokoohaki, H.; Miguez, F.E.; Laird, D.; Dumortier, J. Where should we apply biochar? Environ. Res. Lett. 2019, 14, 044005. [Google Scholar] [CrossRef]
- Duthie-Kannikkatt, K.; Shukla, S.; Rao ML, S.; Sakkhari, K.; Pachari, D. Sowing the seeds of resilience: A case study of community-based Indigenous seed conservation from Andhra Pradesh, India. Local Environ. 2019, 24, 843–860. [Google Scholar] [CrossRef]
- Afzal, I.; Shabir, R.; Rauf, S. Seed production technologies of some major field crops. In Agronomic Crops: Volume 1: Production Technologies; Springer: Singapore, 2019; pp. 655–678. [Google Scholar]
- Nataraja, T.; Naika, R.; Shankarappa, S.K.; Reddy, K.V.; Abdelmohsen, S.A.; Al-Harbi, F.F.; El-Abedin, T.K.Z.; Elansary, H.O.; Abdelbacki, A.M. Productivity of paddies as influenced by varied rates of recommended nutrients in conjunction with biofertilizers in local landraces. Agronomy 2021, 11, 1165. [Google Scholar] [CrossRef]
- Vernooy, R.; Sthapit, B.; Galluzzi, G.; Shrestha, P. The multiple functions and services of community seedbanks. Resources 2014, 3, 636–656. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Return to agrobiodiversity: Participatory plant breeding. Diversity 2022, 14, 126. [Google Scholar] [CrossRef]
- Kathait, K. Effect of Selected Plant Growth Promoting Rhizobacteria (PGPRs) on the Growth of Sorghum [Sorghum bicolor (L.) Moench] and urd [Vigna mungo (L). Hipper] in Mixed Cropping; G. B. Pant University of Agriculture and Technology: Pantnagar, India, 2023. [Google Scholar]
- Milder, J.C.; Garbach, K.; DeClerck, F.A.; Driscoll, L.; Montenegro, M. An assessment of the multi-functionality of agroecological intensification. Gates Open Res. 2019, 3, 279. [Google Scholar]
- Sikiru, S.; Abioye, K.J.; Adedayo, H.B.; Adebukola, S.Y.; Soleimani, H.; Anar, M. Technology projection in biofuel production using agricultural waste materials as a source of energy sustainability: A comprehensive review. Renew. Sustain. Energy Rev. 2024, 200, 114535. [Google Scholar] [CrossRef]
- Mintz-Habib, N. Biofuels, Food Security, and Developing Economies; Routledge: Abingdon, UK, 2016. [Google Scholar]
- Kimutai, S.K.; Kimutai, I.K.; Manirambona, E. Impact of biogas adoption on household energy use and livelihood improvement in Kenya: An overview on a roadmap toward sustainability. Int. J. Energy Sect. Manag. 2025, 19, 551–568. [Google Scholar] [CrossRef]
- Bellon, S.; Lamine, C. Conversion to organic farming: A multidimensional research object at the crossroads of agricultural and social sciences-A review. Sustain. Agric. 2009, 1, 653–672. [Google Scholar]
- Glockow, T.; Kaster, A.-K.; Rabe, K.S.; Niemeyer, C.M. Sustainable agriculture: Leveraging microorganisms for a circular economy. Appl. Microbiol. Biotechnol. 2024, 108, 452. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; Volume 9, pp. 539–579. [Google Scholar]
- Petropoulos, T.; Benos, L.; Busato, P.; Kyriakarakos, G.; Kateris, D.; Aidonis, D.; Bochtis, D. Soil Organic Carbon Assessment for Carbon Farming: A Review. Agriculture 2025, 15, 567. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C. Nitrogen—Total. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; Volume 9, pp. 595–624. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Mueller, T. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEN value. Soil Biol. Biochem. 1996, 28, 33–37. [Google Scholar] [CrossRef]
- McGilchrist, C.; Trenbath, B. A revised analysis of plant competition experiments. Biometrics 1971, 27, 659–671. [Google Scholar] [CrossRef]
- Dobermann, A. Nutrient Use Efficiency–Measurement and Management; International Fertilizer Industry Association: Paris, France, 2007. [Google Scholar]
- Martinez-Feria, R.A.; Castellano, M.J.; Dietzel, R.N.; Helmers, M.J.; Liebman, M.; Huber, I.; Archontoulis, S.V. Linking crop-and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 2018, 256, 131–143. [Google Scholar] [CrossRef]
- Tabatabai, M. Methods of Soil Analysis, Part 2-Microbiological and Biochemical Properties; Soil enzymes; John Wiley & Sons: Hoboken, NJ, USA, 1994; pp. 775–833. [Google Scholar]
- Anderson, J.P. Soil respiration. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; Volume 9, pp. 831–871. [Google Scholar]
- Willey, R.W. Intercropping-its importance and research needs. 1. Competition and yield advantages. Field Crop Abstr. 1979, 32, 1–10. [Google Scholar]
- Folina, A.; Stavropoulos, P.; Mavroeidis, A.; Roussis, I.; Kakabouki, I.; Tsiplakou, E.; Bilalis, D. Optimizing Fodder Yield and Quality Through Grass–Legume Relay Intercropping in the Mediterranean Region. Plants 2025, 14, 877. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.; Doran, J.W.; Cline, R.; Harris, R.; Schuman, G. Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. A Mathematical Model of Communication; University of Illinois Press: Urbana, IL, USA, 1949; Volume 11, pp. 11–20. [Google Scholar]
- Reddy, A.A.; Melts, I.; Mohan, G.; Rani, C.R.; Pawar, V.; Singh, V.; Choubey, M.; Vashishtha, T.; Suresh, A.; Bhattarai, M. Economic impact of organic agriculture: Evidence from a Pan-India survey. Sustainability 2022, 14, 15057. [Google Scholar] [CrossRef]
- Pei, B.; Liu, T.; Xue, Z.; Cao, J.; Zhang, Y.; Yu, M.; Liu, E.; Xing, J.; Wang, F.; Ren, X. Effects of Biofertilizer on Yield and Quality of Crops and Properties of Soil Under Field Conditions in China: A Meta-Analysis. Agriculture 2025, 15, 1066. [Google Scholar] [CrossRef]
- Ansar, A.; Du, J.; Javed, Q.; Adnan, M.; Javaid, I. Biodegradable Waste in Compost Production: A Review of Its Economic Potential. Nitrogen 2025, 6, 24. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?–A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.G.; Kirk, G.J.; Jones, P.J.; Williams, A.G. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. 2019, 10, 4641. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Espinoza-Orias, N.; Croker, T.; Azapagic, A. Life cycle greenhouse gas emissions from integrated organic farming: A systems approach considering rotation cycles. Sustain. Prod. Consum. 2018, 13, 60–79. [Google Scholar] [CrossRef]
- Oyege, I.; Balaji Bhaskar, M.S. Effects of vermicompost on soil and plant health and promoting sustainable agriculture. Soil Syst. 2023, 7, 101. [Google Scholar] [CrossRef]
- Nigussie, A.; Kuyper, T.W.; Bruun, S.; de Neergaard, A. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J. Clean. Prod. 2016, 139, 429–439. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Qadir, A.A.; Khalid, S.; Murtaza, G.; Ashraf, M.N.; Javed, W.; Waqas, M.A.; Xu, M. Greenhouse gas emissions, carbon stocks and wheat productivity following biochar, compost and vermicompost amendments: Comparison of non-saline and salt-affected soils. Sci. Rep. 2024, 14, 7752. [Google Scholar]
- Sultan, H.; Li, Y.; Ahmed, W.; Shah, A.; Faizan, M.; Ahmad, A.; Abbas, H.M.M.; Nie, L.; Khan, M.N. Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. J. Environ. Manag. 2024, 355, 120448. [Google Scholar] [CrossRef]
- Akanmu, A.O.; Olowe, O.M.; Phiri, A.T.; Nirere, D.; Odebode, A.J.; Karemera Umuhoza, N.J.; Asemoloye, M.D.; Babalola, O.O. Bioresources in organic farming: Implications for sustainable agricultural systems. Horticulturae 2023, 9, 659. [Google Scholar] [CrossRef]
- Sarker, T.C.; Zotti, M.; Fang, Y.; Giannino, F.; Mazzoleni, S.; Bonanomi, G.; Cai, Y.; Chang, S.X. Soil aggregation in relation to organic amendment: A synthesis. J. Soil Sci. Plant Nutr. 2022, 22, 2481–2502. [Google Scholar] [CrossRef]
- Imran. Integration of organic, inorganic and bio fertilizer, improve maize-wheat system productivity and soil nutrients. J. Plant Nutr. 2024, 47, 2494–2510. [Google Scholar] [CrossRef]
- Ismail, N.; Man, N.N. Synergistic Application of Biochar with Microbes for Removal of Contaminants from Industrial Effluent. In Catalytic Applications of Biochar for Environmental Remediation: A Green Approach Towards Environment Restoration (Vol 1); ACS Publications: Washington, DC, USA, 2024; pp. 157–169. [Google Scholar]
- Folina, A.; Mavroeidis, A.; Stavropoulos, P.; Eisenbach, L.; Kakabouki, I.; Bilalis, D. Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators. Nitrogen 2024, 5, 712–731. [Google Scholar] [CrossRef]
- Stein-Bachinger, K.; Gottwald, F.; Haub, A.; Schmidt, E. To what extent does organic farming promote species richness and abundance in temperate climates? A review. Org. Agric. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Chen, W.; Modi, D.; Picot, A. Soil and phytomicrobiome for plant disease suppression and management under climate change: A review. Plants 2023, 12, 2736. [Google Scholar] [CrossRef]
- Vishwakarma, K.; Sharma, S.; Kumar, N.; Upadhyay, N.; Devi, S.; Tiwari, A. Contribution of microbial inoculants to soil carbon sequestration and sustainable agriculture. In Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications; Springer: New Delhi, India, 2016; pp. 101–113. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Taylor & Francis: Abingdon, UK, 2024. [Google Scholar]
- Tiwari, A.K.; Pal, D.B. Nutrients contamination and eutrophication in the river ecosystem. In Ecological Significance of River Ecosystems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 203–216. [Google Scholar]
- Pathak, H.K.; Chauhan, P.K.; Seth, C.S.; Dubey, G.; Upadhyay, S.K. Mechanistic and future prospects in rhizospheric engineering for agricultural contaminants removal, soil health restoration, and management of climate change stress. Sci. Total Environ. 2024, 927, 172116. [Google Scholar] [CrossRef]
- Ramesh, P.; Panwar, N.; Singh, A.; Ramana, S.; Yadav, S.K.; Shrivastava, R.; Rao, A.S. Status of organic farming in India. Curr. Sci. 2010, 1190–1194. [Google Scholar]
- Sammauria, R.; Kumawat, S.; Kumawat, P.; Singh, J.; Jatwa, T.K. Microbial inoculants: Potential tool for sustainability of agricultural production systems. Arch. Microbiol. 2020, 202, 677–693. [Google Scholar] [CrossRef]
- Sahoo, R.K.; Bhardwaj, D.; Tuteja, N. Biofertilizers: A sustainable eco-friendly agricultural approach to crop improvement. In Plant Acclimation to Environmental Stress; Springer: Berlin/Heidelberg, Germany, 2012; pp. 403–432. [Google Scholar]
- Singh, S.; Singh, P.; Sharma, A.; Choudhury, M. Agriculture Waste Management and Bioresource: The Circular Economy Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Scialabba, N.E.-H.; Müller-Lindenlauf, M. Organic agriculture and climate change. Renew. Agric. Food Syst. 2010, 25, 158–169. [Google Scholar] [CrossRef]
- Niggli, U.; Fließbach, A.; Hepperly, P.; Scialabba, N. Low greenhouse gas agriculture: Mitigation and adaptation potential of sustainable farming systems. Okol. Landbau 2009, 141, 32–33. [Google Scholar]
- Corrado, S.; Caldeira, C.; Eriksson, M.; Hanssen, O.J.; Hauser, H.-E.; van Holsteijn, F.; Liu, G.; Östergren, K.; Parry, A.; Secondi, L. Food waste accounting methodologies: Challenges, opportunities, and further advancements. Glob. Food Secur. 2019, 20, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Shreck, A.; Getz, C.; Feenstra, G. Social sustainability, farm labor, and organic agriculture: Findings from an exploratory analysis. Agric. Hum. Values 2006, 23, 439–449. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Scaling up agroecological approaches for food sovereignty in Latin America. Development 2008, 51, 472–480. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Thammachai, A. A systematic review of factors influencing farmers’ adoption of organic farming. Sustainability 2021, 13, 3842. [Google Scholar] [CrossRef]
- Francis, C.; Lieblein, G.; Gliessman, S.; Breland, T.A.; Creamer, N.; Harwood, R.; Salomonsson, L.; Helenius, J.; Rickerl, D.; Salvador, R. Agroecology: The ecology of food systems. J. Sustain. Agric. 2003, 22, 99–118. [Google Scholar] [CrossRef]
- Sujatha, V.; Sengupta, A. Knowledge, science and society. Indian Sociology: Emerging Concepts, Structure, and Change 2014, 1, 135–196. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change 2017, 140, 33–45. [Google Scholar] [CrossRef]
- White, B. IFAD Research Series 48: Rural Youth, Today and Tomorrow. Today and Tomorrow; IFAD: Rome, Italy, 2020. [Google Scholar]
- Dos Reis, G.A.; Martínez-Burgos, W.J.; Pozzan, R.; Pastrana Puche, Y.; Ocán-Torres, D.; de Queiroz Fonseca Mota, P.; Rodrigues, C.; Lima Serra, J.; Scapini, T.; Karp, S.G. Comprehensive Review of Microbial Inoculants: Agricultural Applications, Technology Trends in Patents, and Regulatory Frameworks. Sustainability 2024, 16, 8720. [Google Scholar] [CrossRef]
- Arjjumend, H.; Koutouki, K. Legal barriers and quality compliance in the business of biofertilizers and biopesticides in India. J. Leg. Stud. 2020, 26, 81–101. [Google Scholar] [CrossRef]
- Ochieng, R. Towards a Regulatory Framework for Increased and Sustainable Use of Bio-Fertilizers in Kenya. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2015. [Google Scholar]
- Pérez-Rodriguez, M.M.; Pontin, M.; Lipinski, V.; Bottini, R.; Piccoli, P.; Cohen, A.C. Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions. J. Soil Sci. Plant Nutr. 2020, 20, 1614–1624. [Google Scholar] [CrossRef]
- Andrade-Sifuentes, A.; Fortis-Hernández, M.; Preciado-Rangel, P.; Orozco-Vidal, J.A.; Yescas-Coronado, P.; Rueda-Puente, E.O. Azospirillum brasilense and solarized manure on the production and phytochemical quality of tomato fruits (Solanum lycopersicum L.). Agronomy 2020, 10, 1956. [Google Scholar] [CrossRef]
- Silva, A.M.; Jones, D.L.; Chadwick, D.R.; Qi, X.; Cotta, S.R.; Araújo, V.L.; Matteoli, F.P.; Lacerda-Júnior, G.V.; Pereira, A.P.; Fernandes-Júnior, P.I. Can arbuscular mycorrhizal fungi and rhizobacteria facilitate 33P uptake in maize plants under water stress? Microbiol. Res. 2023, 271, 127350. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Thakur, M.; Rani, A. Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr. J. Agric. Res. 2014, 9, 3838–3852. [Google Scholar]
- Behera, B.; Das, T.; Raj, R.; Ghosh, S.; Raza, M.B.; Sen, S. Microbial consortia for sustaining productivity of non-legume crops: Prospects and challenges. Agric. Res. 2021, 10, 1–14. [Google Scholar] [CrossRef]
- Timofeeva, A.M.; Galyamova, M.R.; Sedykh, S.E. Plant growth-promoting bacteria of soil: Designing of consortia beneficial for crop production. Microorganisms 2023, 11, 2864. [Google Scholar] [CrossRef]
- Kariithi, J.N.; Ngosia, D.S.; Kamau, F.K.; Rubenstein, D.I. Precision organic farming, increasing grain yield, soil nutrient management and economic viability for maize production. agriRxiv 2023. agriRxiv: 20230487221. [Google Scholar]
- LaCanne, C.E.; Lundgren, J.G. Regenerative agriculture: Merging farming and natural resource conservation profitably. PeerJ 2018, 6, e4428. [Google Scholar] [CrossRef]
- Iqbal, S.; Xu, J.; Khan, S.; Worthy, F.R.; Khan, H.Z.; Nadir, S.; Ranjitkar, S. Regenerative fertilization strategies for climate-smart agriculture: Consequences for greenhouse gas emissions from global drylands. J. Clean. Prod. 2023, 398, 136650. [Google Scholar] [CrossRef]
- Feliziani, G.; Bordoni, L.; Gabbianelli, R. Regenerative Organic Agriculture and Human Health: The Interconnection Between Soil, Food Quality, and Nutrition. Antioxidants 2025, 14, 530. [Google Scholar] [CrossRef]
- Blouin, M.; Robin, A.; Amans, L.; Reverchon, F.; Barois, I.; Lavelle, P. A meta-analysis reveals earthworms as mutualists rather than predators of soil microorganisms. Geoderma 2025, 455, 117238. [Google Scholar] [CrossRef]
- Sher, A.; Li, H.; Hamid, Y.; Nasir, B.; Zhang, J. Importance of regenerative agriculture: Climate, soil health, biodiversity and its socioecological impact. Discov. Sustain. 2024, 5, 462. [Google Scholar] [CrossRef]
- Gul, S.; Winans, K.S.; Leila, M.; Whalen, J.K. Sustaining soil carbon in bioenergy cropping systems of northern temperate regions. CABI Rev. 2014, 1–23. [Google Scholar] [CrossRef]
- Murphy, D.J. Carbon Sequestration by Tropical Trees and Crops: A Case Study of Oil Palm. Agriculture 2024, 14, 1133. [Google Scholar] [CrossRef]
- Hart, A.K.; McMichael, P.; Milder, J.C.; Scherr, S.J. Multi-functional landscapes from the grassroots? The role of rural producer movements. Agric. Hum. Values 2016, 33, 305–322. [Google Scholar] [CrossRef]
- Home, R.; Bouagnimbeck, H.; Ugas, R.; Arbenz, M.; Stolze, M. Participatory guarantee systems: Organic certification to empower farmers and strengthen communities. Agroecol. Sustain. Food Syst. 2017, 41, 526–545. [Google Scholar] [CrossRef]
Category | Source | Examples | Use in Organic Farming |
---|---|---|---|
Primary | Natural biological sources | Crops, animals, algae, timber | Direct input: compost, manure, green manure |
Secondary | Processing by-products | Crop residues, manure, oilseed cakes, microbial inoculants | Biofertilizers, compost, biopesticides |
Tertiary | Residues from manufacturing/refinement | Spent mushroom substrate, fruit pulp, rice husk ash | Soil conditioners, compost ingredients |
Quaternary | End-of-line bio-waste and effluents | Biogas slurry, treated kitchen waste, OFMSW compost | Biogas input, compost (with certification) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folina, A.; Kakabouki, I.; Baginetas, K.; Bilalis, D. Integration of Bioresources for Sustainable Development in Organic Farming: A Comprehensive Review. Resources 2025, 14, 102. https://doi.org/10.3390/resources14070102
Folina A, Kakabouki I, Baginetas K, Bilalis D. Integration of Bioresources for Sustainable Development in Organic Farming: A Comprehensive Review. Resources. 2025; 14(7):102. https://doi.org/10.3390/resources14070102
Chicago/Turabian StyleFolina, Antigolena, Ioanna Kakabouki, Konstantinos Baginetas, and Dimitrios Bilalis. 2025. "Integration of Bioresources for Sustainable Development in Organic Farming: A Comprehensive Review" Resources 14, no. 7: 102. https://doi.org/10.3390/resources14070102
APA StyleFolina, A., Kakabouki, I., Baginetas, K., & Bilalis, D. (2025). Integration of Bioresources for Sustainable Development in Organic Farming: A Comprehensive Review. Resources, 14(7), 102. https://doi.org/10.3390/resources14070102