Biochar: A Key Player in Carbon Credits and Climate Mitigation
Abstract
:1. Introduction
2. Carbon Market Mechanism
3. Biochar: A Negative Emissions Technology
3.1. Carbon Sequestration
3.2. The Cascaded Use of Biochar Prior to Its Permanent Storage in the Soil’s Carbon Reservoir
4. Carbon Removal Marketplace
5. Case Studies and Projects
6. Knowledge Gaps, Areas of Concern, and Research Priorities
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Shivanna, K.R. Climate Change and Its Impact on Biodiversity and Human Welfare. Proc. Indian Natl. Sci. Acad. Part A Phys. Sci. 2022, 88, 160–171. [Google Scholar] [CrossRef]
- Ashley, M.J.; Johnson, M.S. Establishing a Secure, Transparent, and Autonomous Blockchain of Custody for Renewable Energy Credits and Carbon Credits. IEEE Eng. Manag. Rev. 2018, 46, 100–102. [Google Scholar] [CrossRef]
- Carbon Trade: What It Is, How It Works, Current Events. Available online: https://www.investopedia.com/ask/answers/04/060404.asp (accessed on 13 December 2023).
- Calel, R. Carbon Markets: A Historical Overview. WIREs Clim. Chang. 2013, 4, 107–119. [Google Scholar] [CrossRef]
- Reyes, O.; Gilbertson, T. Carbon Trading: How It Works and Why It Fails. Soundings 2010, 45, 89–100. [Google Scholar] [CrossRef]
- Brown, M.; Schoen, J.H.; Gross, J.; Omary, R.A.; Hanneman, K. Climate Change and Radiology: Impetus for Change and a Toolkit for Action. Radiology 2023, 307, e230229. [Google Scholar] [CrossRef]
- Tang, K.H.D. A Review of Environmental, Social and Governance (ESG) Regulatory Frameworks: Their Implications on Malaysia. Trop. Aqua. Soil Pollut. 2023, 3, 168–183. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Ghosh, S.K. Circular Economy Adoption: Catalysing Decarbonisation Through Policy Instruments; Springer Nature: Berlin/Heidelberg, Germany, 2023; ISBN 978-981-9948-03-1. [Google Scholar]
- Zilberman, D.; Laird, D.; Rainey, C.; Song, J.; Kahn, G. Biochar Supply-Chain and Challenges to Commercialization. GCB Bioenergy 2023, 15, 7–23. [Google Scholar] [CrossRef]
- AR6 Synthesis Report: Climate Change 2023—IPCC; IPCC: Paris, France, 2023.
- Mulabagal, V.; Baah, D.A.; Egiebor, N.O.; Sajjadi, B.; Chen, W.-Y.; Viticoski, R.L.; Hayworth, J.S. Biochar from Biomass: A Strategy for Carbon Dioxide Sequestration, Soil Amendment, Power Generation, CO2 Utilization, and Removal of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in the Environment. In Handbook of Climate Change Mitigation and Adaptation; Lackner, M., Sajjadi, B., Chen, W.-Y., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1023–1085. ISBN 978-3-030-72579-2. [Google Scholar]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Biochar Production Techniques Utilizing Biomass Waste-Derived Materials and Environmental Applications–A Review. J. Hazard. Mater. Adv. 2022, 7, 100134. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Kumar, S.; Singh Rathore, S.; Yadav, D.; Kumar Yadav, S.; Yadav, V.; Alam Ansari, M.; Das, A.; Adireddy Rajanna, G.; et al. Biochar Implications in Cleaner Agricultural Production and Environmental Sustainability. Environ. Sci. Adv. 2023, 2, 1042–1059. [Google Scholar] [CrossRef]
- Sörman, L. Enabling Small-Scale Production of Biochar in Carbon Markets: A Multi-Actor Governance Approach; KTH: Tikchik, Alaska, USA, 2023. [Google Scholar]
- Yadav, R.; Ramakrishna, W. Biochar as an Environment-Friendly Alternative for Multiple Applications. Sustainability 2023, 15, 13421. [Google Scholar] [CrossRef]
- Abbas, A.; Ekowati, D.; Suhariadi, F.; Fenitra, R.M. Health Implications, Leaders Societies, and Climate Change: A Global Review. In Ecological Footprints of Climate Change: Adaptive Approaches and Sustainability; Chatterjee, U., Akanwa, A.O., Kumar, S., Singh, S.K., Dutta Roy, A., Eds.; Springer Climate; Springer International Publishing: Cham, Switzerland, 2022; pp. 653–675. ISBN 978-3-031-15501-7. [Google Scholar]
- Wang, H.; Zhang, D. Examining the Interplay between Fossil Fuel Mining, Sustainable Growth, and Economic Prosperity. Resour. Policy 2023, 87, 104324. [Google Scholar] [CrossRef]
- Dreyfus, G.; Frederick, C.; Larkin, E.; Powers, Y. Climate Change Mitigation through Organic Carbon Strategies; Precision Development: Newton, MA, USA; The Institute for Governance & Sustainable Development: Washington, DC, USA, 2023. [Google Scholar]
- Kishwan, J. Chapter 8 - REDD+ and Its Implementation in the Himalayan Region: Policy Issues. In Climate Change in the Himalayas; Kumar, A., Jong, W.D., Kumar, M., Pandey, R., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 121–139. ISBN 978-0-443-19415-3. [Google Scholar]
- Albers, H.J.; Lee, K.D.; Robinson, E.J.Z. Economics of Reducing Emissions From Deforestation and Forest Degradation: Incentives to Change Forest Use Behavior. In Encyclopedia of the Anthropocene; Dellasala, D.A., Goldstein, M.I., Eds.; Elsevier: Oxford, UK, 2018; pp. 61–65. ISBN 978-0-12-813576-1. [Google Scholar]
- Liu, P.R.; Raftery, A.E. Country-Based Rate of Emissions Reductions Should Increase by 80% beyond Nationally Determined Contributions to Meet the 2 °C Target. Commun. Earth Environ. 2021, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.; Stinson, G.; Lacoul, P. Carbon Credits and the Conservation of Natural Areas. Environ. Rev. 2009, 17, 1–19. [Google Scholar] [CrossRef]
- Kaplan, R.S.; Ramanna, K.; Roston, M. Accounting for Carbon Offsets–Establishing the Foundation for Carbon-Trading Markets 2023; SSRN: Rochester, NY, USA, 2023. [Google Scholar]
- Verma, M. Navigating the World of Carbon Credits: Strategies for Emissions Reduction and Market Participation. Int. J. Trend Sci. Res. Dev. 2023, 7, 259–264. [Google Scholar]
- Acampora, A.; Ruini, L.; Mattia, G.; Pratesi, C.A.; Lucchetti, M.C. Towards Carbon Neutrality in the Agri-Food Sector: Drivers and Barriers. Resour. Conserv. Recycl. 2023, 189, 106755. [Google Scholar] [CrossRef]
- Cai, J.; Zheng, H.; Vardanyan, M.; Shen, Z. Achieving Carbon Neutrality through Green Technological Progress: Evidence from China. Energy Policy 2023, 173, 113397. [Google Scholar] [CrossRef]
- Yao, L.; Tan, S.; Xu, Z. Towards Carbon Neutrality: What Has Been Done and What Needs to Be Done for Carbon Emission Reduction? Environ. Sci. Pollut. Res. 2023, 30, 20570–20589. [Google Scholar] [CrossRef]
- Fuglestvedt, J.; Lund, M.T.; Kallbekken, S.; Samset, B.H.; Lee, D.S. A “Greenhouse Gas Balance” for Aviation in Line with the Paris Agreement. WIREs Clim. Chang. 2023, 14, e839. [Google Scholar] [CrossRef]
- Environment, U.N. Carbon Markets. Available online: http://www.unep.org/topics/climate-action/climate-finance/carbon-markets (accessed on 13 December 2023).
- Deknatel, N. Forming Markets for Carbon Dioxide Removal Technologies: The Role and Influence of Voluntary and Compliance Carbon Markets. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2023. [Google Scholar]
- Cassimon, D.; Engelen, P.-J.; Peters, L.; Prowse, M. Valuing Investments in the Global Carbon Market Mechanism as Compound Real Options: Lessons from the Clean Development Mechanism. Sustain. Dev. 2023, 31, 3443–3458. [Google Scholar] [CrossRef]
- Schneider, H. The Role of Carbon Markets in the Paris Agreement: Mitigation and Development. In Climate Change and Global Development: Market, Global Players and Empirical Evidence; Sequeira, T., Reis, L., Eds.; Contributions to Economics; Springer International Publishing: Cham, Switzerland, 2019; pp. 109–132. ISBN 978-3-030-02662-2. [Google Scholar]
- Dawes, A.; McGeady, C.; Majkut, J. Voluntary Carbon Markets: A Review of Global Initiatives and Evolving Models; Center for Spatial Information Science (CSIS): Tokyo, Japan, 2023. [Google Scholar]
- Essl, F.; Erb, K.-H.; Glatzel, S.; Pauchard, A. Climate Change, Carbon Market Instruments, and Biodiversity: Focusing on Synergies and Avoiding Pitfalls. WIREs Clim. Chang. 2018, 9, e486. [Google Scholar] [CrossRef]
- Gupta, A.; Mason, M. Disclosing or Obscuring? The Politics of Transparency in Global Climate Governance. Curr. Opin. Environ. Sustain. 2016, 18, 82–90. [Google Scholar] [CrossRef]
- An EU Strategy on Standardisation-Setting Global Standards in Support of a Resilient, Green and Digital EU Single Market|StandICT.Eu 2026. Available online: https://standict.eu/eu-standardisation-strategy-2022 (accessed on 1 February 2024).
- Coleman, E.; Tripathy, A.; Sroka, S.; Klein, L.; Ferreira da Silva, A.; Rakhlin, M.; Roa, B.; Díez, J. Carbon Credits and Credibility: A Collaborative Endeavor; MIT: Cambridge, MA, USA, 2023. [Google Scholar]
- Ferreyra Marinucci, X. Carbon offsetting in the framework of Net Zero Carbon Buildings. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2023. [Google Scholar]
- Sanei, H.; Rudra, A.; Przyswitt, Z.M.M.; Kousted, S.; Sindlev, M.B.; Zheng, X.; Nielsen, S.B.; Petersen, H.I. Assessing Biochar’s Permanence: An Inertinite Benchmark. Int. J. Coal Geol. 2023, 281, 104409. [Google Scholar] [CrossRef]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in Climate Change Mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Yang, H.; Doran, J.; Rooney, D.W. Industrial Biochar Systems for Atmospheric Carbon Removal: A Review. Environ. Chem. Lett. 2021, 19, 3023–3055. [Google Scholar] [CrossRef]
- Sage, R.F.; Gilman, I.S.; Smith, J.A.C.; Silvera, K.; Edwards, E.J. Atmospheric CO2 Decline and the Timing of CAM Plant Evolution. Ann. Bot. 2023, 132, 753–770. [Google Scholar] [CrossRef]
- Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar Properties and Eco-Friendly Applications for Climate Change Mitigation, Waste Management, and Wastewater Treatment: A Review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Guirguis, A.; Yang, W.; Conlan, X.A.; Kong, L.; Cahill, D.M.; Wang, Y. Boosting Plant Photosynthesis with Carbon Dots: A Critical Review of Performance and Prospects. Small 2023, 19, 2300671. [Google Scholar] [CrossRef]
- Kong, S.H.; Loh, S.K.; Bachmann, R.T.; Zainal, H.; Cheong, K.Y. Palm Kernel Shell Biochar Production, Characteristics and Carbon Sequestration Potential. J. Oil Palm Res. 2019, 31, 508–520. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Du, Z.-L.; Zhao, J.-K.; Wang, Y.-D.; Zhang, Q.-Z. Biochar Addition Drives Soil Aggregation and Carbon Sequestration in Aggregate Fractions from an Intensive Agricultural System. J. Soils Sediments 2017, 17, 581–589. [Google Scholar] [CrossRef]
- Guo, J.; Chen, B. Insights on the Molecular Mechanism for the Recalcitrance of Biochars: Interactive Effects of Carbon and Silicon Components. Environ. Sci. Technol. 2014, 48, 9103–9112. [Google Scholar] [CrossRef]
- Zimmerman, A.R. Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1295–1301. [Google Scholar] [CrossRef]
- Windeatt, J.H.; Ross, A.B.; Williams, P.T.; Forster, P.M.; Nahil, M.A.; Singh, S. Characteristics of Biochars from Crop Residues: Potential for Carbon Sequestration and Soil Amendment. J. Environ. Manag. 2014, 146, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-T. Carbon-Negative Policies by Reusing Waste Wood as Material and Energy Resources for Mitigating Greenhouse Gas Emissions in Taiwan. Atmosphere 2021, 12, 1220. [Google Scholar] [CrossRef]
- Ganguly, A.; Brown, R.C.; Wright, M.M. Techno-Economic and Greenhouse Gas Emission Assessment of Carbon Negative Pyrolysis Technology. Green Chem. 2022, 24, 9290–9302. [Google Scholar] [CrossRef]
- Pradhan, G.; Meena, R.S. Utilizing Waste Compost to Improve the Atmospheric CO2 Capturing in the Rice-Wheat Cropping System and Energy-Cum-carbon Credit Auditing for a Circular Economy. Sci. Total Environ. 2023, 892, 164572. [Google Scholar] [CrossRef]
- Sumption, P. Organic Vegetable Grower: A Practical Guide to Growing for the Market; The Crowood Press: Marlborough, UK, 2023; ISBN 978-0-7198-4312-9. [Google Scholar]
- The European Biochar Certificate (EBC). Available online: https://www.european-biochar.org/en/ (accessed on 11 December 2023).
- Dickson, R.; Liu, J.J. A Strategy for Advanced Biofuel Production and Emission Utilization from Macroalgal Biorefinery Using Superstructure Optimization. Energy 2021, 221, 119883. [Google Scholar] [CrossRef]
- Phasing out Fossil Fuels Could Save Millions of Lives. Available online: https://www.sciencedaily.com/releases/2023/11/231130113241.htm (accessed on 11 December 2023).
- Latawiec, A.E.; Peake, L.; Baxter, H.; Cornelissen, G.; Grotkiewicz, K.; Hale, S.; B Królczyk, J.; Kubon, M.; Łopatka, A.; Medynska-Juraszek, A.; et al. A Reconnaissance-Scale GIS-Based Multicriteria Decision Analysis to Support Sustainable Biochar Use: Poland as a Case Study. J. Environ. Eng. Landsc. Manag. 2017, 25, 208–222. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, Y.; Li, H.; Hu, W.; Cheng, J.; Lee, X. A Bibliometric Review of Biochar for Soil Carbon Sequestration and Mitigation from 2001 to 2020. Ecotoxicol. Environ. Saf. 2023, 264, 115438. [Google Scholar] [CrossRef]
- Rodrigues, C.I.D.; Brito, L.M.; Nunes, L.J.R. Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. Soil Syst. 2023, 7, 64. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar Stability in Soil: Meta-Analysis of Decomposition and Priming Effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Bo, X.; Zhang, Z.; Wang, J.; Guo, S.; Li, Z.; Lin, H.; Huang, Y.; Han, Z.; Kuzyakov, Y.; Zou, J. Benefits and Limitations of Biochar for Climate-Smart Agriculture: A Review and Case Study from China. Biochar 2023, 5, 77. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to Improve Soil Fertility. A Review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Kalu, S.; Kulmala, L.; Zrim, J.; Peltokangas, K.; Tammeorg, P.; Rasa, K.; Kitzler, B.; Pihlatie, M.; Karhu, K. Potential of Biochar to Reduce Greenhouse Gas Emissions and Increase Nitrogen Use Efficiency in Boreal Arable Soils in the Long-Term. Front. Environ. Sci. 2022, 10, 914766. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Eldin, S.M.; Ali, I.; Usman, M.; Iqbal, R.; Rizwan, M.; Abdel-Hameed, U.K.; Haider, A.A.; Tariq, A. Biochar as a Green Sorbent for Remediation of Polluted Soils and Associated Toxicity Risks: A Critical Review. Separations 2023, 10, 197. [Google Scholar] [CrossRef]
- Kamali, M.; Sweygers, N.; Al-Salem, S.; Appels, L.; Aminabhavi, T.M.; Dewil, R. Biochar for Soil Applications-Sustainability Aspects, Challenges and Future Prospects. Chem. Eng. J. 2022, 428, 131189. [Google Scholar] [CrossRef]
- Liu, Q.; Meki, K.; Zheng, H.; Yuan, Y.; Shao, M.; Luo, X.; Li, X.; Jiang, Z.; Li, F.; Xing, B. Biochar Application in Remediating Salt-Affected Soil to Achieve Carbon Neutrality and Abate Climate Change. Biochar 2023, 5, 45. [Google Scholar] [CrossRef]
- Leng, R.; Inthapanya, S.; Preston, T. Biochar Lowers Net Methane Production from Rumen Fluid in Vitro. Livest. Res. Rural. Dev. 2012, 24, 103. [Google Scholar]
- Zeghioud, H.; Fryda, L.; Djelal, H.; Assadi, A.; Kane, A. A Comprehensive Review of Biochar in Removal of Organic Pollutants from Wastewater: Characterization, Toxicity, Activation/Functionalization and Influencing Treatment Factors. J. Water Process. Eng. 2022, 47, 102801. [Google Scholar] [CrossRef]
- Salma, A.; Binti Faeruz, N.M.; Fryda, L.; Djelal, H. Harnessing Digestate Potential: Impact of Biochar and Reagent Addition on Biomethane Production in Anaerobic Digestion Systems. Processes 2023, 11, 2284. [Google Scholar] [CrossRef]
- Chiappero, M.; Demichelis, F.; Norouzi, O.; Berruti, F.; Hu, M.; Mašek, O.; Maria, F.D.; Fiore, S. Review of Biochar Application in Anaerobic Digestion Processes. Bio-Char II Prod. Charact. Appl. 2019, 131, 11003. [Google Scholar]
- Graf, A.; Wohlfahrt, G.; Aranda-Barranco, S.; Arriga, N.; Brümmer, C.; Ceschia, E.; Ciais, P.; Desai, A.R.; Di Lonardo, S.; Gharun, M.; et al. Joint Optimization of Land Carbon Uptake and Albedo Can Help Achieve Moderate Instantaneous and Long-Term Cooling Effects. Commun. Earth Environ. 2023, 4, 298. [Google Scholar] [CrossRef]
- Harris, E. The Voluntary Carbon Offsets Market: An Analysis of Market Characteristics and Opportunities for Sustainable Development; IIED: London, UK, 2007; ISBN 978-1-84369-676-6. [Google Scholar]
- Kelleway, J.; Serrano, O.; Baldock, J.; Cannard, T.; Lavery, P.; Lovelock, C.; Macreadie, P.; Masqué, P.; Saintilan, N.; Steven, A. Technical Review of Opportunities for Including Blue Carbon in the Australian Government’s Emissions Reduction Fund. Final Report. Prepared for the Department of the Environment and Energy; CSIRO: Perth, Australia, 2017. [Google Scholar]
- Honegger, M.; Poralla, M.; Michaelowa, A.; Ahonen, H.-M. Who Is Paying for Carbon Dioxide Removal? Designing Policy Instruments for Mobilizing Negative Emissions Technologies. Front. Clim. 2021, 3, 672996. [Google Scholar] [CrossRef]
- Trendafilova, P. What Are Carbon Dioxide Removal Marketplaces and How Many Are There? Available online: https://carbonherald.com/carbon-dioxide-removal-marketplaces-can-they-remove-corporate-emissions/ (accessed on 13 December 2023).
- Zimmerman, E.; Magala, R.; Schulte, L.; Tyndall, J.; James, D. Carbon Science for Carbon Markets: Emerging Opportunities in Iowa. Chapter 8. Agricultural Carbon Planning; Iowa State University Extension and Outreach: Ames, IA, USA, 2022. [Google Scholar]
- Kujanpää, L.; Reznichenko, A.; Saastamoinen, H.; Mäkikouri, S.; Soimakallio, S.; Tynkkynen, O.; Lehtonen, J.; Wirtanen, T.; Linjala, O.; Similä, L.; et al. Carbon Dioxide Use and Removal: Prospects and Policies. Available online: https://julkaisut.valtioneuvosto.fi/handle/10024/164795 (accessed on 8 December 2023).
- Company. Available online: https://www.carbonfuture.earth/company (accessed on 13 December 2023).
- Basilevac, J. An Analysis of Factors Affecting Municipal Biochar Implementation in Voluntary Carbon Markets. Bachelor’s Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2023. [Google Scholar]
- Hanssen, K.H.; Bruckman, V.J.; Gundale, M.; Indriksons, A.; Ingerslev, M.; Kaivapalu, M.; Lazdina, D.; Makovskis, K.; O’Toole, A.; Ots, K.; et al. Biochar in Forestry. Status in the Nordic-Baltic Countries; NIBIO: Akershus, Norway, 2023. [Google Scholar]
- Puro.earth CORC Carbon Credit Supplier Listing. Available online: https://puro.earth/CORC-co2-removal-certificate/ (accessed on 8 December 2023).
Case Study/Projects | Location | Key Benefits | Methodology and Achievements | Carbon Credit Generated from | Ref. |
---|---|---|---|---|---|
Cool Terra Carbon | United States |
| Demonstrated BC’s impact on soil health, crop productivity, and carbon sequestration. Quantified carbon stored in soil through improved agricultural practices, resulting in reduced GHG emissions and increased soil organic carbon. | Sequestration Project | [73] |
Sonnenerde Pyreg 500 | Austria |
| Use biogenic waste. Long-term carbon storage | Agricultural Residue Conversion and Soil Improvement project | [74] |
Terra Preta | Africa and South America |
| Replaced traditional waste management with BC-based systems. Reduced GHG emissions from waste management, improved soil fertility, and generated carbon credits. | Sanitation Project | [75] |
Carbon Gold’s Sustainable Agriculture | UK and Africa |
| Measured and quantified increased soil carbon content and crop yields due to BC application. Generated carbon credits based on these measurements. | Sequestration Project | [76] |
Husk BC Project | Southeast Asia |
| Demonstrated BC’s effectiveness in reducing methane emissions while improving soil health. Generated carbon credits based on reduced methane emissions and carbon sequestration in soils. | Sequestration Project | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salma, A.; Fryda, L.; Djelal, H. Biochar: A Key Player in Carbon Credits and Climate Mitigation. Resources 2024, 13, 31. https://doi.org/10.3390/resources13020031
Salma A, Fryda L, Djelal H. Biochar: A Key Player in Carbon Credits and Climate Mitigation. Resources. 2024; 13(2):31. https://doi.org/10.3390/resources13020031
Chicago/Turabian StyleSalma, Alaa, Lydia Fryda, and Hayet Djelal. 2024. "Biochar: A Key Player in Carbon Credits and Climate Mitigation" Resources 13, no. 2: 31. https://doi.org/10.3390/resources13020031
APA StyleSalma, A., Fryda, L., & Djelal, H. (2024). Biochar: A Key Player in Carbon Credits and Climate Mitigation. Resources, 13(2), 31. https://doi.org/10.3390/resources13020031