How Do Extreme Lake Water Temperatures in Poland Respond to Climate Change?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- George, G. The Impact of Climate Change on European Lakes; Springer: Dordrecht, The Netherlands, 2010; pp. 1–13. [Google Scholar]
- Kernan, M.; Battarbee, R.; Moss, B. (Eds.) Changing Climate and Changing Freshwaters: A European Perspective; Wiley-Blackwell: Hoboken, NJ, USA, 2010; 320p. [Google Scholar]
- Jeppesen, E.; Meerhoff, M.; Davidson, T.; Trolle, D.; Sondergaar, D.M.; Lauridsen, T.; Beklioğlu, M.; Brucet, S.; Volta, P.; González-Bergonzoni, I.; et al. Climate change impacts on lakes: An integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J. Limnol. 2014, 73, 844. [Google Scholar] [CrossRef]
- Taner, M.Ü.; Carleton, J.N.; Wellman, M. Integrated model projections of climate change impacts on a North American lake. Ecol. Model. 2011, 222, 3380–3393. [Google Scholar] [CrossRef]
- Mooij, W.M.; De Senerpont Domis, L.N.; Janse, J.H. Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model. Ecol. Model. 2009, 220, 3011–3020. [Google Scholar] [CrossRef]
- Blenckner, T.; Omstedt, A.; Rummukainen, M. A Swedish case study of contemporary and possible future consequences of climate change on lake function. Aquat. Sci. Res. Boundaries 2002, 64, 171–184. [Google Scholar] [CrossRef]
- Jeppesen, E.; Meerhoff, M.; Jacobsen Ba Hansen, R.S.; Søndergaard, M.; Jensen, J.P.; Lauridsen, T.L.; Mazzeo, N.; Branco, C.W.C. Restoration of shallow lakes by nutrient control and biomanipulation—The successful strategy varies with lake size and climate. Hydrobiologia 2007, 581, 269–285. [Google Scholar] [CrossRef]
- Rahel, F.J.; Olden, J.D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. J. Soc. Conserv. Biol. 2008, 22, 521–533. [Google Scholar] [CrossRef]
- Mooij, W.M.; Hülsmann, S.; De Senerpont Domis, L.N.; Nolet, B.A.; Bodelier, P.L.E.; Boers, P.C.M.; Pires, L.M.D.; Gons, H.J.; Ibelings, B.W.; Noordhuis, R.; et al. The impact of climate change on lakes in the Netherlands: A review. Aquat. Ecol. 2005, 39, 381–400. [Google Scholar] [CrossRef]
- Verburg, P.; Hecky, R.E.; Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 2003, 301, 505–507. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, B.; Teubner, K.; Dokulil, M. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. Plankton Res. 2003, 25, 445–453. [Google Scholar] [CrossRef]
- Winder, M.; Schindler, D.E.; Essington, T.E.; Litt, A.H.; Edmondson, W.T. Disrupted seasonal clockwork in the population dynamics of a freshwater copepod by climate warming. Limnol. Oceanogr. 2009, 54, 2493–2505. [Google Scholar] [CrossRef]
- Fang, X.; Stefan, H.G. Simulations of climate effects on water temperatures, dissolved oxygen, and ice and snow covers in lakes of the contiguous United States under past and future climate scenarios. Limnol. Oceanogr. 2009, 54, 2359–2370. [Google Scholar] [CrossRef]
- Palmer, M.E.; Yan, N.D.; Somers, K.M. Climate change drives coherent trends in physics and oxygen content in North American lakes. Clim. Chang. 2014, 124, 285–299. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H. Effects of changing climate on ice cover in three morphometrically different lakes. Hydrol. Process. 2017, 31, 308–323. [Google Scholar] [CrossRef]
- Sharma, S.; Blagrave, K.; Magnuson, J.J.; O’reilly, C.M.; Oliver, S.; Batt, R.D.; Magee, M.R.; Straile, D.; Weyhenmeyer, G.A.; Winslow, L.; et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Chang. 2019, 9, 227–231. [Google Scholar] [CrossRef]
- Schindler, D.W. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 2001, 58, 18–29. [Google Scholar] [CrossRef]
- Lenters, J.D.; Kratz, T.K.; Bowser, C.J. Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). J. Hydrol. 2005, 308, 168–195. [Google Scholar] [CrossRef]
- Riveros-Iregui, D.A.; Lenters, J.D.; Peake, C.S.; Ong, J.B.; Healey, N.C.; Zlotnik, V.A. Evaporation from a shallow, saline lake in the Nebraska Sandhills: Energy balance drivers of seasonal and interannual variability. J. Hydrol. 2017, 553, 172–187. [Google Scholar] [CrossRef]
- Watras, C.J.; Read, J.S.; Holman, K.D.; Liu, Z.; Song, Y.-Y.; Watras, A.J.; Morgan, S.; Stanley, E. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: Hydroclimatic implications. Geophys. Res. Lett. 2014, 41, 456–462. [Google Scholar] [CrossRef]
- Notaro, M.; Bennington, V.; Lofgren, B. Dynamical downscaling–based projections of Great Lakes water levels. J. Clim. 2015, 28, 9721–9745. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Busker, T.; de Roo, A.; Gelati, E.; Schwatke, C.; Adamovic, M.; Bisselink, B.; Cottam, A. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 2019, 23, 669–690. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Nowak, B. Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland—Lake Śniardwy. J. Hydrol. Hydrodyn. 2020, 68, 260–270. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Choiński, A.; Nowak, B. Effect of environmental conditions and morphometric parameters on surface water temperature in Polish Lakes. Water 2018, 10, 580. [Google Scholar] [CrossRef]
- Choiński, A. Katalog Jezior Polski; Wydawnictwo Naukowe UAM: Poznań, Poland, 2006. [Google Scholar]
- Ptak, M.; Olowoyeye, T.; Sojka, M. Trends of Changes in Minimum Lake Water Temperature in Poland. Appl. Sci. 2022, 12, 12601. [Google Scholar] [CrossRef]
- Ptak, M.; Wrzesiński, D.; Choiński, A. Long-term changes in the hydrological regime of high mountain lake Morskie Oko (Tatra Mountains, Central Europe). J. Hydrol. Hydromech. 2017, 65, 146–153. [Google Scholar] [CrossRef]
- Dokulil, M.T.; de Eyto, E.; Maberly, S.C.; May, L.; Weyhenmeyer, G.A.; Woolway, R.I. Increasing maximum lake surface temperature under climate change. Clim. Chang. 2021, 165, 56. [Google Scholar] [CrossRef]
- Stefanidis, S.; Stathis, D. Spatial and Temporal Rainfall Variability over the Mountainous Central Pindus (Greece). Climate 2018, 6, 75. [Google Scholar] [CrossRef]
- Myronidis, D.; Ioannou, K.; Fotakis, D.; Dörflinger, G. Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus. Water Resour. Manag. 2018, 32, 1759–1776. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M. Different reactions to climate change as observed in selected elements of hydrological regime of the deepest lake on the Central European Plain (Lake Hańcza). Hydrol. Sci. J. 2021, 66, 1083–1095. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold Co.: New York, NY, USA, 1987; p. 320. [Google Scholar]
- Patakamuri, S.K.; O’Brien, N. Package “MODIFIEDMK” Title Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests. R Package Version 2021, 1. [Google Scholar]
- Pernaravičiute, B. The impact of climate change on thermal regime of Lithuanian lakes. Ekologija 2004, 2, 58–63. [Google Scholar]
- Gross-Wittke, A.; Selge, F.; Gunkel, G. Effects of water warming on bank filtration: Experimental enclosure studies. WIT Trans. Ecol. Environ. 2013, 171, 209–224. [Google Scholar]
- Nōges, T.; Tuvikene, L.; Nōges, P. Contemporary trends of temperature, nutrient loading, and water quality in large Lakes Peipsi and Vōrtsjärv, Estonia. Aquat. Ecosyst. Health 2010, 13, 143–153. [Google Scholar] [CrossRef]
- Schmid, M.; Koster, O. Excess warming of a Central European lake driven by solar brightening. Water Resour. Res. 2016, 52, 8103–8116. [Google Scholar] [CrossRef]
- Woolway, R.I.; Meinson, P.; Nõges, P.; Jones, I.D.; Laas, A. Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Clim. Chang. 2017, 141, 759–773. [Google Scholar] [CrossRef]
- Czernecki, B.; Ptak, M. The impact of global warming on lake surface water temperature in Poland-the application of empirical-statistical downscaling, 1971–2100. J. Limnol. 2018, 77, 330–348. [Google Scholar] [CrossRef]
- Woolway, R.I.; Merchant, C.J. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci. Rep. 2017, 7, 4130. [Google Scholar] [CrossRef]
- Soja, G.; Züger, J.; Knoflacher, M.; Kinner, P.; Soja, A.M. Climate impacts on water balance of a shallow steppe lake in Eastern Austria (Lake Neusiedl). J. Hydrol. 2013, 480, 115–124. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Choiński, A.; Ptak, M. Effect of North Atlantic Oscillation on the hydrological conditions of Lake Morskie Oko (Carphatian Mountains). Bull. Geogr. Phys. Geogr. Ser. 2016, 10, 95–105. [Google Scholar] [CrossRef]
- Austin, J.; Colman, S. A century of temperature variability in Lake Superior. Limnol. Oceanogr. 2008, 53, 2724–2730. [Google Scholar] [CrossRef]
- Peeters, F.; Livingstone, D.M.; Goudsmit, G.-H.; Kipfer, R.; Forster, R. Modeling 50 years of historical temperature profiles in alarge central European Lake. Limnol. Oceanogr. 2002, 47, 186–197. [Google Scholar] [CrossRef]
- Livingstone, D.M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Chang. 2003, 57, 205–225. [Google Scholar] [CrossRef]
- Thackeray, S.J.; Henrys, P.A.; Hemming, D.; Bell, J.R.; Botham, M.S.; Burthe, S.; Helaouët, P.; Johns, D.G.; Jones, I.D.; Leech, D.I.; et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 2016, 535, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Hansen, G.J.A.; Read, J.S.; Hansen, J.F.; Winslow, L.A. Projected shifts in fish species dominance in Wisconsin lakes under climate change. Glob. Chang. Biol. 2017, 23, 1463–1476. [Google Scholar] [CrossRef]
- Ye, X.; Anderson, E.J.; Chu, P.Y.; Huang, C.; Xue, P. Impact of Water Mixing and Ice Formation on the Warming of Lake Superior: A Model guided Mechanism Study. Limnol. Oceanogr. 2018, 64, 558–574. [Google Scholar] [CrossRef]
- Winslow, L.A.; Read, J.S.; Hansen GJ, A.A.; Rose, K.C.; Robertson, D.M. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures. Limnol. Oceanogr. 2017, 62, 2168–2178. [Google Scholar] [CrossRef]
- Pełechata, A.; Pełechaty, M.; Pukacz, A. Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake. Aquat. Bot. 2015, 124, 32. [Google Scholar] [CrossRef]
- Currie, R.J.; Bennett, W.A.; Beitinger, T.L. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Environ. Biol. Fishes 1998, 51, 187–200. [Google Scholar] [CrossRef]
- Jonsson, T.; Setzer, M. A freshwater predator hit twice by the effects of warming across trophic levels. Nat. Commun. 2015, 6, 5992. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J.; Radocinski, R.G.; Corlett, G.K.; Hulley, G.C.; Schladow, S.G.; Steissberg, T.E. Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophys. Res. Lett. 2009, 36, 22. [Google Scholar] [CrossRef]
- Shinohara, R.; Tanaka, Y.; Kanno, A.; Matsushige, K. Relative impacts of increases of solar radiation and air temperature on the temperature of surface water in a shallow, eutrophic lake. Hydrol. Res. 2021, 52, 916–926. [Google Scholar] [CrossRef]
- Rigosi, A.; Hanson, P.; Hamilton, D.P.; Hipsey, M.; Rusak, J.A.; Bois, J.; Sparber, K.; Chorus, I.; Watkinson, A.J.; Qin, B.; et al. Determining the probability of cyanobacterial blooms: The application of Bayesian networks in multiple lake systems. Ecol. Appl. 2015, 25, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.P.; Magee, M.R.; Wu, C.H.; Kratz, T.K. Ice cover and thermal regime in a dimictic seepage lake under climate change. Inland Waters 2018, 8, 381–398. [Google Scholar] [CrossRef]
- Ptak, M.; Nowak, B. Variability of oxygen-thermal conditions in selected lakes in Polan. Ecol. Chem. Eng. S 2016, 23, 639–650. [Google Scholar]
- Rempfer, J.; Livingstone, D.M.; Blodau, C.; Forster, R.; Niederhauser, P.; Kipfer, R. The effect of the exceptionally mild European winter of 2006–2007 on temperature and oxygen profiles in lakes in Switzerland: A foretaste of the future? Limnol. Oceanogr. 2010, 55, 2170–2180. [Google Scholar] [CrossRef]
- Skowron, R. The Differentiation and the Changeability of Choin Elements of the Thermal Regime of Water in Lakes on Polish Lowland; Wydawnictwo Naukowe UMK: Toruń, Poland, 2011; 346p. [Google Scholar]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010, 37, L22405. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 33–115. [Google Scholar]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef]
- Hampton, S.E.; Galloway AW, E.; Powers, S.M.; Ozersky, T.; Woo, K.H.; Batt, R.D.; Labou, S.G.; O’Reilly, C.M.; Sharma, S.; Lottig, N.R.; et al. Ecology under lake ice. Ecol. Lett. 2017, 20, 98–111. [Google Scholar] [CrossRef] [PubMed]
No | Lake | Latitude | Longitude | Area (ha) | Volume (103 m3) | Mean Depth (m) | Ice Cover Max Thickness (cm) (Mean 1972–2021) | Köppen’s Climate Classification |
---|---|---|---|---|---|---|---|---|
1 | Sławskie | 51.89 | 16.02 | 822.5 | 42,664.8 | 5.2 | 20.0 | Cfb |
2 | Sępoleńskie | 53.46 | 17.51 | 157.5 | 7501.6 | 4.8 | 22.6 | Cfb |
3 | Charzykowskie | 53.77 | 17.50 | 1336.0 | 134,533.2 | 9.8 | 22.2 | Cfb |
4 | Gardno | 54.71 | 17.39 | 2337.5 | 30,950.5 | 1.3 | 18.8 | Cfb |
5 | Bachotek | 53.30 | 19.47 | 215.0 | 15,394.2 | 7.2 | 24.8 | Cfb |
6 | Jeziorak | 53.72 | 19.62 | 3152.5 | 141,594.2 | 4.1 | 22.4 | Cfb |
7 | Mikołajskie | 53.77 | 21.60 | 424.0 | 55,739.7 | 11.2 | 27.6 | Dfb |
8 | Selmęt Wielki | 53.83 | 22.48 | 1207.5 | 9963.9 | 7.8 | 30.2 | Dfb |
9 | Studzieniczne | 53.87 | 23.12 | 244.0 | 22,073.6 | 8.7 | 29.9 | Dfb |
10 | Hańcza | 54.27 | 22.81 | 305.0 | 120,000.0 | 38.7 | 24.1 | Dfb |
Lake | 1972–2021 | 1972–2001 | 1982–2011 | 1992–2021 | ||||
---|---|---|---|---|---|---|---|---|
Z-Value | p-Value | Z-Value | p-Value | Z-Value | p-Value | Z-Value | p-Value | |
Minimum Temperature | ||||||||
Sławskie | 2.75 | 0.01 **** | 1.58 | 0.12 | 0.43 | 0.67 | 1.78 | 0.07 |
Gardno | 0.00 | 1.00 | −0.13 | 0.89 | 0.10 | 0.92 | 0.63 | 0.53 |
Sępoleńskie | 1.89 | 0.06 | 2.25 | 0.02 **** | −0.45 | 0.65 | 1.11 | 0.27 |
Charzykowskie | 3.35 | 0.00 **** | 2.01 | 0.04 **** | 0.81 | 0.42 | 2.59 | 0.01 **** |
Mikołajskie | 1.34 | 0.18 | −0.38 | 0.71 | 0.66 | 0.51 | 1.86 | 0.06 |
Jeziorak | 0.42 | 0.67 | 0.96 | 0.34 | 0.06 | 0.96 | 1.89 | 0.06 |
Selmęt Wielki | 5.07 | 0.00 **** | 4.75 | 0.00 **** | 1.37 | 0.17 | 1.29 | 0.20 |
Studzieniczne | 1.68 | 0.09 | −0.96 | 0.34 | 1.18 | 0.24 | 2.12 | 0.03 **** |
Hańcza | 2.18 | 0.03 **** | 2.17 | 0.03 **** | 0.02 | 0.99 | 1.71 | 0.09 |
Bachotek | 3.15 | 0.00 **** | 2.48 | 0.01 **** | 0.84 | 0.40 | 2.19 | 0.03 **** |
Maximum temperature | ||||||||
Sławskie | 4.44 | 0.00 **** | 2.01 | 0.04 **** | 2.27 | 0.02 **** | 1.89 | 0.06 |
Gardno | 1.97 | 0.05 **** | −0.51 | 0.61 | 0.47 | 0.64 | 1.67 | 0.10 |
Sępoleńskie | 2.37 | 0.02 **** | 0.88 | 0.38 | 1.26 | 0.21 | 1.11 | 0.27 |
Charzykowskie | 3.51 | 0.00 **** | 0.77 | 0.44 | 3.28 | 0.00 **** | 1.89 | 0.06 |
Mikołajskie | 3.04 | 0.00 **** | 0.21 | 0.84 | 2.34 | 0.02 **** | 1.71 | 0.09 |
Jeziorak | 3.89 | 0.00 **** | 0.66 | 0.51 | 0.66 | 0.51 | 2.79 | 0.01 **** |
Selmęt Wielki | 2.92 | 0.00 **** | −0.47 | 0.64 | 1.07 | 0.28 | 2.49 | 0.01 **** |
Studzieniczne | 4.44 | 0.00 **** | 0.99 | 0.32 | 2.98 | 0.00 **** | 2.49 | 0.01 **** |
Hańcza | 2.96 | 0.00 **** | 0.00 | 1.00 | 2.57 | 0.01 **** | 2.46 | 0.01 **** |
Bachotek | 3.51 | 0.00 **** | 1.41 | 0.16 | 2.08 | 0.04 **** | 1.56 | 0.12 |
Change Magnitude | Change Classification |
---|---|
<0.10 | Very Low |
0.10–0.34 | Low |
0.35–0.64 | Moderate |
0.65–0.94 | High |
>0.94 | Very high |
Lakes | Identifier | Meteorological Stations | Identifier |
---|---|---|---|
Sławskie | 1 | Zielona Góra | A |
Sępoleńskie | 2 | Chojnice | B |
Charzykowskie | 3 | Łeba | C |
Gardno | 4 | Toruń | D |
Bachotek | 5 | Kętrzyn | E |
Jeziorak | 6 | Olsztyn | F |
Mikołajskie | 7 | Kętrzyn | E |
Selmęt Wielki | 8 | Kętrzyn | E |
Studzieniczne | 9 | Kętrzyn | E |
Hańcza | 10 | Kętrzyn | E |
Period | Average Trend (°C per Decade) | Median Trend (°C per Decade) |
---|---|---|
Minimum water temperature trend value | ||
1972–2011 | 0.08 a* | 0.07 a |
1982–2011 | 0.14 a | 0.04 a |
1992–2021 | 0.43 | 0.46 |
1972–2021 | 0.07 a | 0.06 a |
Maximum water temperature trend value | ||
1972–2011 | 0.21 | 0.30 |
1982–2011 | 0.59 ab | 0.61 a |
1992–2021 | 0.75 a | 0.65 a |
1972–2021 | 0.52 b | 0.56 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olowoyeye, T.; Ptak, M.; Sojka, M. How Do Extreme Lake Water Temperatures in Poland Respond to Climate Change? Resources 2023, 12, 107. https://doi.org/10.3390/resources12090107
Olowoyeye T, Ptak M, Sojka M. How Do Extreme Lake Water Temperatures in Poland Respond to Climate Change? Resources. 2023; 12(9):107. https://doi.org/10.3390/resources12090107
Chicago/Turabian StyleOlowoyeye, Temidayo, Mariusz Ptak, and Mariusz Sojka. 2023. "How Do Extreme Lake Water Temperatures in Poland Respond to Climate Change?" Resources 12, no. 9: 107. https://doi.org/10.3390/resources12090107