Competitiveness of Namibia’s Agri-Food Commodities: Implications for Food Security
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Method, Data, and Sources
2.2. Revealed Comparative Advantage and Lafay Index
2.3. Export Diversification Index/Concentration Index
2.4. Major Export Category
2.5. Land productivity (LAND) and Labor Productivity (LABOUR)
2.6. Food Security Implications/HFIAS
2.7. Determinants of RCA and LFI
3. Results
3.1. Revealed Comparative Advantage (RCA) and Lafay Index (LFI) for Agri-Food Commodities
3.2. Export Diversification Index and Major Export Categories of Agri-Food Commodities
3.3. Model Estimates and Economic Analysis
3.3.1. RCA and LFI as Outcome Variables
3.3.2. HFIAS as Outcome Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Live Animals (00) | Meat & M. Preparations (01) | Fish (03) | Dairy (02) | Vegetables & Fruit (05) | Sugar & Honey (06) | Coffee (07) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | |
2000 | 6.88 | 0.42 | 2.63 | −0.02 | 23.31 | 8.50 | 0.14 | −0.40 | 0.44 | −0.91 | 1.64 | −0.81 | 0.17 | −0.34 |
2001 | 22.91 | 1.52 | 3.42 | 0.54 | 27.05 | 10.83 | 0.18 | −0.28 | 0.41 | −0.63 | 1.57 | −0.59 | 0.30 | −0.25 |
2002 | 15.59 | 1.21 | 2.80 | 0.45 | 26.01 | 10.26 | 0.36 | −0.19 | 0.60 | −0.39 | 3.34 | −0.45 | 0.18 | −0.21 |
2003 | 24.19 | 1.61 | 5.10 | 1.24 | 31.65 | 11.88 | 0.44 | −0.25 | 0.98 | −0.41 | 3.71 | −0.39 | 0.19 | −0.32 |
2004 | 22.89 | 1.40 | 5.77 | 1.30 | 22.13 | 7.54 | 0.26 | −0.39 | 0.95 | −0.75 | 1.72 | −0.74 | 0.30 | −0.46 |
2005 | 29.40 | 1.72 | 7.45 | 1.89 | 21.64 | 7.11 | 0.16 | −0.34 | 1.08 | −0.63 | 1.31 | −0.83 | 0.37 | −0.35 |
2006 | 24.09 | 1.33 | 5.89 | 1.21 | 19.58 | 6.02 | 0.14 | −0.37 | 1.11 | −0.44 | 0.65 | −0.87 | 0.30 | −0.37 |
2007 | 21.91 | 1.15 | 5.64 | 1.31 | 18.32 | 5.26 | 0.15 | −0.31 | 1.17 | −0.35 | 0.65 | −1.59 | 0.29 | −0.24 |
2008 | 10.83 | 0.54 | 4.90 | 0.97 | 19.08 | 5.18 | 0.13 | −0.31 | 1.00 | −0.39 | 0.90 | −0.60 | 0.25 | −0.22 |
2009 | 10.48 | 0.63 | 4.45 | 1.06 | 16.67 | 5.45 | 0.17 | −0.30 | 1.06 | −0.32 | 0.57 | −0.78 | 0.22 | −0.23 |
2010 | 18.71 | 1.02 | 4.65 | 0.96 | 19.32 | 6.10 | 0.27 | −0.30 | 1.05 | −0.41 | 0.63 | −0.85 | 0.20 | −0.28 |
2011 | 22.52 | 1.20 | 4.50 | 0.96 | 19.00 | 5.99 | 0.17 | −0.31 | 0.72 | −0.57 | 0.75 | −0.72 | 0.18 | −0.25 |
2012 | 13.32 | 0.72 | 4.76 | 1.31 | 20.41 | 6.43 | 0.13 | −0.30 | 0.83 | −0.42 | 0.56 | −0.63 | 0.28 | −0.17 |
2013 | 16.01 | 0.86 | 3.20 | 0.93 | 17.53 | 8.37 | 0.08 | −0.29 | 0.66 | −0.42 | 0.32 | −0.60 | 0.16 | −0.18 |
2014 | 9.51 | 0.51 | 2.52 | 0.70 | 15.91 | 5.44 | 0.09 | −0.24 | 0.63 | −0.30 | 0.21 | −0.44 | 0.01 | −0.19 |
2015 | 22.33 | 1.20 | 2.86 | 0.72 | 17.33 | 5.91 | 0.04 | −0.25 | 0.66 | −0.28 | 0.19 | −0.49 | 0.02 | −0.21 |
2016 | 11.75 | 0.66 | 1.94 | 0.44 | 15.7 | 5.95 | 0.01 | −0.28 | 0.55 | −0.35 | 0.11 | −0.59 | 0.01 | −0.24 |
2017 | 31.17 | 1.78 | 1.94 | 0.36 | 16.67 | 6.22 | 0.08 | −0.30 | 0.77 | −0.19 | 0.05 | −0.63 | 0.09 | −0.44 |
2018 | 24.56 | 1.37 | 1.39 | 0.19 | 13.20 | 4.73 | 0.09 | −0.24 | 0.78 | −0.12 | 0.07 | −0.47 | 0.09 | −0.37 |
2019 | 19.04 | 1.08 | 1.85 | 0.41 | 13.85 | 4.96 | 0.06 | −0.23 | 0.93 | −0.02 | 0.09 | −0.49 | 0.09 | −0.34 |
2020 | 11.97 | 0.70 | 1.11 | 0.01 | 13.96 | 4.93 | 0.05 | −0.25 | 0.89 | 0.07 | 0.04 | −0.60 | 0.03 | −0.37 |
2021 | 14.39 | 0.70 | 1.18 | 0.01 | 15.53 | 4.93 | 0.05 | −0.25 | 1.05 | 0.07 | 0.04 | −0.60 | 0.03 | −0.37 |
Food | Tobacco | Crude Materials | Animal & Vegetable Oils | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Cereals (04) | Miscellaneous (09) | Tobacco (12) | Raw Hides (21) | Silk (26) | An. & Veg. Oils (43) | ||||||
RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | |
2000 | 0.17 | −1.01 | 0.30 | −0.92 | 1.38 | −0.01 | 7.57 | 0.35 | 0.04 | −0.02 | 0.00 | −0.03 |
2001 | 0.26 | −0.94 | 0.20 | −0.56 | 0.35 | −0.05 | 4.65 | 0.25 | 0.28 | 0.03 | 0.07 | −0.02 |
2002 | 1.01 | −0.92 | 0.41 | −0.31 | 0.82 | 0.01 | 5.57 | 0.29 | 0.15 | −0.43 | 0.14 | −0.04 |
2003 | 0.69 | −0.94 | 0.81 | −0.28 | 0.75 | −0.1 | 5.28 | 0.24 | 0.37 | −0.02 | 0.07 | −0.05 |
2004 | 0.33 | −1.13 | 0.22 | −0.61 | 0.43 | −0.43 | 2.43 | 0.09 | 0.21 | 0.01 | 0.02 | −0.09 |
2005 | 0.34 | −0.87 | 0.22 | −0.72 | 0.55 | −0.42 | 3.25 | 0.09 | 0.22 | 0.01 | 0.02 | −0.04 |
2006 | 0.23 | −0.94 | 0.16 | −0.64 | 0.64 | −0.40 | 3.73 | 0.12 | 0.07 | −0.01 | 0.02 | −0.01 |
2007 | 0.15 | −0.94 | 0.18 | −0.48 | 0.24 | −0.35 | 4.86 | 0.12 | 0.06 | 0.00 | 0.01 | 0.00 |
2008 | 0.18 | −0.94 | 0.14 | −0.45 | 4.53 | 0.07 | 3.61 | 0.07 | 0.06 | −0.01 | 0.03 | −0.01 |
2009 | 0.25 | −0.94 | 0.16 | −0.52 | 1.07 | −0.35 | 2.93 | 0.07 | 0.03 | −0.01 | 0.02 | 0.00 |
2010 | 0.16 | −0.87 | 0.13 | −0.53 | 1.19 | −0.35 | 2.51 | 0.07 | 0.02 | −0.01 | 0.01 | 0.00 |
2011 | 0.14 | −0.90 | 0.15 | −0.5 | 0.28 | −0.40 | 2.89 | 0.09 | 0.02 | −0.01 | 0.01 | 0.00 |
2012 | 0.17 | −0.79 | 0.20 | −0.43 | 0.05 | −0.37 | 3.36 | 0.11 | 0.02 | −0.01 | 0.02 | 0.00 |
2013 | 0.22 | −0.93 | 0.22 | −0.42 | 0.21 | −0.33 | 2.79 | 0.11 | 0.01 | −0.01 | 0.00 | 0.00 |
2014 | 0.19 | −0.70 | 0.28 | −0.32 | 0.34 | −0.25 | 2.04 | 0.06 | 0.01 | −0.01 | 0.01 | 0.00 |
2015 | 0.42 | −0.68 | 0.38 | −0.32 | 0.34 | −0.26 | 1.20 | 0.03 | 0.01 | −0.01 | 0.00 | 0.00 |
2016 | 0.21 | −0.96 | 0.47 | −0.36 | 0.38 | −0.24 | 1.66 | 0.03 | 0.01 | −0.01 | 0.00 | 0.00 |
2017 | 0.16 | −0.84 | 0.39 | −0.5 | 1.29 | −0.27 | 3.04 | 0.02 | 0.03 | −0.01 | 0.14 | −0.02 |
2018 | 0.14 | −0.77 | 0.25 | −0.41 | 1.26 | −0.22 | 4.39 | 0.04 | 0.01 | 0.00 | 0.13 | −0.01 |
2019 | 0.17 | −0.93 | 0.29 | −0.40 | 0.86 | −0.21 | 4.20 | 0.03 | 0.03 | −0.01 | 0.22 | 0.00 |
2020 | 0.12 | −0.91 | 0.30 | −0.43 | 0.34 | −0.28 | 1.93 | 0.01 | 0.02 | −0.01 | 0.16 | −0.01 |
2021 | 0.12 | −0.91 | 0.33 | −0.43 | 0.40 | −0.28 | 1.81 | 0.01 | 0.02 | −0.01 | 0.14 | −0.01 |
Year | Live Animals (00) | Meat and Meat Preparations (01) | Fish (03) | Dairy (02) | Edible Vegetables & Fruit (05) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEC (%) | EDI | HI | MEC (%) | EDI | HI | MEC (%) | EDI | HI | MEC (%) | EDI | HI | MEC (%) | EDI | HI | |
2000 | 0.0096 | 0.0048 | 0.0001 | 0.0183 | 0.0092 | 0.0003 | 0.1841 | 0.0920 | 0.0339 | 0.0006 | 0.0003 | 0.0000 | 0.0047 | 0.0024 | 0.0000 |
2001 | 0.0318 | 0.0159 | 0.0010 | 0.0262 | 0.0131 | 0.0007 | 0.2249 | 0.1124 | 0.0506 | 0.0008 | 0.0004 | 0.0000 | 0.0048 | 0.0024 | 0.0000 |
2002 | 0.0251 | 0.0125 | 0.0006 | 0.0208 | 0.0104 | 0.0004 | 0.2111 | 0.1055 | 0.0445 | 0.0016 | 0.0008 | 0.0000 | 0.0072 | 0.0036 | 0.0001 |
2003 | 0.0332 | 0.0166 | 0.0011 | 0.0376 | 0.0188 | 0.0014 | 0.2446 | 0.1223 | 0.0598 | 0.0020 | 0.0010 | 0.0000 | 0.0120 | 0.006 | 0.0001 |
2004 | 0.0287 | 0.0144 | 0.0008 | 0.0410 | 0.0205 | 0.0017 | 0.1581 | 0.0790 | 0.0250 | 0.0012 | 0.0006 | 0.0000 | 0.0106 | 0.0053 | 0.0001 |
2005 | 0.0354 | 0.0177 | 0.0013 | 0.0541 | 0.0271 | 0.0029 | 0.1505 | 0.0752 | 0.0227 | 0.0007 | 0.0003 | 0.0000 | 0.0120 | 0.006 | 0.0001 |
2006 | 0.0277 | 0.0139 | 0.0008 | 0.0390 | 0.0195 | 0.0015 | 0.1288 | 0.0644 | 0.0166 | 0.0006 | 0.0003 | 0.0000 | 0.0117 | 0.0058 | 0.0001 |
2007 | 0.0239 | 0.012 | 0.0006 | 0.0380 | 0.019 | 0.0014 | 0.1136 | 0.0568 | 0.0129 | 0.0007 | 0.0003 | 0.0000 | 0.0127 | 0.0063 | 0.0002 |
2008 | 0.0116 | 0.0058 | 0.0001 | 0.0356 | 0.0178 | 0.0013 | 0.1116 | 0.0558 | 0.0125 | 0.0006 | 0.0003 | 0.0000 | 0.0107 | 0.0053 | 0.0001 |
2009 | 0.0138 | 0.0069 | 0.0002 | 0.0372 | 0.0186 | 0.0014 | 0.1179 | 0.0589 | 0.0139 | 0.0008 | 0.0004 | 0.0000 | 0.0137 | 0.0068 | 0.0002 |
2010 | 0.0213 | 0.0106 | 0.0005 | 0.0350 | 0.0175 | 0.0012 | 0.1299 | 0.0649 | 0.0169 | 0.0012 | 0.0006 | 0.0000 | 0.0125 | 0.0062 | 0.0002 |
2011 | 0.0243 | 0.0121 | 0.0006 | 0.0341 | 0.017 | 0.0012 | 0.1267 | 0.0634 | 0.0161 | 0.0008 | 0.0004 | 0.0000 | 0.0082 | 0.0041 | 0.0001 |
2012 | 0.0149 | 0.0075 | 0.0002 | 0.0361 | 0.018 | 0.0013 | 0.1364 | 0.0682 | 0.0186 | 0.0006 | 0.0003 | 0.0000 | 0.0092 | 0.0046 | 0.0001 |
2013 | 0.0176 | 0.0088 | 0.0003 | 0.0247 | 0.0124 | 0.0006 | 0.1211 | 0.0605 | 0.0147 | 0.0004 | 0.0002 | 0.0000 | 0.0079 | 0.004 | 0.0001 |
2014 | 0.0113 | 0.0056 | 0.0001 | 0.0207 | 0.0104 | 0.0004 | 0.1176 | 0.0588 | 0.0138 | 0.0004 | 0.0002 | 0.0000 | 0.0079 | 0.0039 | 0.0001 |
2015 | 0.0262 | 0.0131 | 0.0007 | 0.0234 | 0.0117 | 0.0005 | 0.1312 | 0.0656 | 0.0172 | 0.0002 | 0.0001 | 0.0000 | 0.0092 | 0.0046 | 0.0001 |
2016 | 0.0142 | 0.0071 | 0.0002 | 0.0163 | 0.0081 | 0.0003 | 0.1306 | 0.0653 | 0.0171 | 0.0000 | 0.0000 | 0.0000 | 0.0083 | 0.0042 | 0.0001 |
2017 | 0.0366 | 0.0183 | 0.0013 | 0.0165 | 0.0082 | 0.0003 | 0.1335 | 0.0668 | 0.0178 | 0.0004 | 0.0002 | 0.0000 | 0.0095 | 0.0047 | 0.0001 |
2018 | 0.0278 | 0.0139 | 0.0008 | 0.0112 | 0.0056 | 0.0001 | 0.1020 | 0.0510 | 0.0104 | 0.0004 | 0.0002 | 0.0000 | 0.0089 | 0.0044 | 0.0001 |
2019 | 0.0233 | 0.0111 | 0.0005 | 0.0162 | 0.0081 | 0.0003 | 0.1076 | 0.0538 | 0.0116 | 0.0003 | 0.0001 | 0.0000 | 0.0110 | 0.0055 | 0.0001 |
2020 | 0.0145 | 0.0072 | 0.0002 | 0.0103 | 0.0052 | 0.0001 | 0.1079 | 0.0539 | 0.0116 | 0.0002 | 0.0001 | 0.0000 | 0.0116 | 0.0058 | 0.0001 |
2021 | 0.0145 | 0.0072 | 0.0002 | 0.0103 | 0.0052 | 0.0001 | 0.1079 | 0.0539 | 0.0116 | 0.0002 | 0.0001 | 0.0000 | 0.0116 | 0.0058 | 0.0001 |
Year | Coffee (07) | Cereals (04) | Sugar & Honey (06) | Miscellaneous (09) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MEC (%) | EDI | HI | MEC (%) | EDI | HI | MEC (%) | EDI | HI | MEC (%) | EDI | HI | |
2000 | 0.0008 | 0.0004 | 0.0000 | 0.0014 | 0.0007 | 0.0000 | 0.0035 | 0.0018 | 0.0000 | 0.0009 | 0.0004 | 0.0000 |
2001 | 0.0013 | 0.0006 | 0.0000 | 0.0023 | 0.0012 | 0.0000 | 0.0041 | 0.0021 | 0.0000 | 0.0007 | 0.0003 | 0.0000 |
2002 | 0.0009 | 0.0004 | 0.0000 | 0.0092 | 0.0046 | 0.0001 | 0.0085 | 0.0042 | 0.0001 | 0.0014 | 0.0007 | 0.0000 |
2003 | 0.0009 | 0.0004 | 0.0000 | 0.0060 | 0.003 | 0.0000 | 0.0091 | 0.0045 | 0.0001 | 0.0028 | 0.0014 | 0.0000 |
2004 | 0.0013 | 0.0007 | 0.0000 | 0.0027 | 0.0014 | 0.0000 | 0.0038 | 0.0019 | 0.0000 | 0.0007 | 0.0004 | 0.0000 |
2005 | 0.0015 | 0.0008 | 0.0000 | 0.0026 | 0.0013 | 0.0000 | 0.0030 | 0.0015 | 0.0000 | 0.0007 | 0.0004 | 0.0000 |
2006 | 0.0012 | 0.0006 | 0.0000 | 0.0017 | 0.0008 | 0.0000 | 0.0016 | 0.0008 | 0.0000 | 0.0005 | 0.0003 | 0.0000 |
2007 | 0.0012 | 0.0006 | 0.0000 | 0.0013 | 0.0007 | 0.0000 | 0.0014 | 0.0007 | 0.0000 | 0.0006 | 0.0003 | 0.0000 |
2008 | 0.0011 | 0.0006 | 0.0000 | 0.0018 | 0.0009 | 0.0000 | 0.0019 | 0.0009 | 0.0000 | 0.0005 | 0.0002 | 0.0000 |
2009 | 0.0012 | 0.0006 | 0.0000 | 0.0027 | 0.0013 | 0.0000 | 0.0016 | 0.0008 | 0.0000 | 0.0006 | 0.0003 | 0.0000 |
2010 | 0.0011 | 0.0005 | 0.0000 | 0.0015 | 0.0007 | 0.0000 | 0.0019 | 0.0009 | 0.0000 | 0.0004 | 0.0002 | 0.0000 |
2011 | 0.0010 | 0.0005 | 0.0000 | 0.0014 | 0.0007 | 0.0000 | 0.0022 | 0.0011 | 0.0000 | 0.0005 | 0.0003 | 0.0000 |
2012 | 0.0015 | 0.0007 | 0.0000 | 0.0018 | 0.0009 | 0.0000 | 0.0016 | 0.0008 | 0.0000 | 0.0007 | 0.0004 | 0.0000 |
2013 | 0.0008 | 0.0004 | 0.0000 | 0.0023 | 0.0011 | 0.0000 | 0.0009 | 0.0004 | 0.0000 | 0.0008 | 0.0004 | 0.0000 |
2014 | 0.0005 | 0.0003 | 0.0000 | 0.0020 | 0.001 | 0.0000 | 0.0005 | 0.0003 | 0.0000 | 0.0011 | 0.0006 | 0.0000 |
2015 | 0.0001 | 0.0001 | 0.0000 | 0.0045 | 0.0022 | 0.0000 | 0.0005 | 0.0002 | 0.0000 | 0.0016 | 0.0008 | 0.0000 |
2016 | 0.0001 | 0.0000 | 0.0000 | 0.0023 | 0.0011 | 0.0000 | 0.0003 | 0.0002 | 0.0000 | 0.0021 | 0.0011 | 0.0000 |
2017 | 0.0006 | 0.0003 | 0.0000 | 0.0015 | 0.0008 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0029 | 0.0014 | 0.0000 |
2018 | 0.0005 | 0.0003 | 0.0000 | 0.0013 | 0.0006 | 0.0000 | 0.0002 | 0.0001 | 0.0000 | 0.0019 | 0.0009 | 0.0000 |
2019 | 0.0005 | 0.0003 | 0.0000 | 0.0017 | 0.0008 | 0.0000 | 0.0002 | 0.0001 | 0.0000 | 0.0023 | 0.0011 | 0.0000 |
2020 | 0.0002 | 0.0001 | 0.0000 | 0.0013 | 0.0006 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0026 | 0.0013 | 0.0000 |
2021 | 0.0002 | 0.0001 | 0.0000 | 0.0013 | 0.0006 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0026 | 0.0013 | 0.0000 |
Year | Tobacco | Crude Materials | Animal and Vegetable Oils | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tobacco (12) | Raw Hides (21) | Silk (26) | Animal, Vegetable Fats (43) | |||||||||
MEC (%) | EDI | HI | MEC (%) | EDI | HI | MEC (%) | EDI | HI | MEC (%) | EDI | HI | |
2000 | 0.0046 | 0.0023 | 0.0000 | 0.0076 | 0.0038 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2001 | 0.0012 | 0.0006 | 0.0000 | 0.0054 | 0.0027 | 0.0000 | 0.0009 | 0.0004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2002 | 0.0027 | 0.0014 | 0.0000 | 0.0060 | 0.003 | 0.0000 | 0.0004 | 0.0002 | 0.0000 | 0.0001 | 0.0000 | 0.0000 |
2003 | 0.0022 | 0.0011 | 0.0000 | 0.0052 | 0.0026 | 0.0000 | 0.0011 | 0.0005 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2004 | 0.0011 | 0.0006 | 0.0000 | 0.0021 | 0.0011 | 0.0000 | 0.0006 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2005 | 0.0014 | 0.0007 | 0.0000 | 0.0025 | 0.0013 | 0.0000 | 0.0005 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2006 | 0.0014 | 0.0007 | 0.0000 | 0.0028 | 0.0014 | 0.0000 | 0.0002 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2007 | 0.0005 | 0.0003 | 0.0000 | 0.0031 | 0.0016 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2008 | 0.0098 | 0.0049 | 0.0001 | 0.0020 | 0.001 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2009 | 0.0030 | 0.0015 | 0.0000 | 0.0016 | 0.0008 | 0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2010 | 0.0028 | 0.0014 | 0.0000 | 0.0017 | 0.0009 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2011 | 0.0006 | 0.0003 | 0.0000 | 0.0021 | 0.001 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2012 | 0.0001 | 0.0001 | 0.0000 | 0.0025 | 0.0013 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2013 | 0.0005 | 0.0002 | 0.0000 | 0.0025 | 0.0012 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2014 | 0.0008 | 0.0004 | 0.0000 | 0.0015 | 0.0008 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2015 | 0.0008 | 0.0004 | 0.0000 | 0.0009 | 0.0004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2016 | 0.0009 | 0.0005 | 0.0000 | 0.0009 | 0.0004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2017 | 0.0030 | 0.0015 | 0.0000 | 0.0007 | 0.0004 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0000 |
2018 | 0.0029 | 0.0015 | 0.0000 | 0.0008 | 0.0004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0000 |
2019 | 0.0021 | 0.001 | 0.0000 | 0.0007 | 0.0003 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0002 | 0.0001 | 0.0000 |
2020 | 0.0008 | 0.0004 | 0.0000 | 0.0002 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0001 | 0.0000 |
2021 | 0.0008 | 0.0004 | 0.0000 | 0.0002 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0001 | 0.0000 |
Outcome Variable—RCA and LFI | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Food and Live Animals | Tobacco | Crude Materials | An. & Veg. Oils | |||||||||||||||||||||||
00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 09 | 12 | 21 | 26 | 43 | ||||||||||||||
RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | RCA | LFI | |
Mean | 18.38 | 1.06 | 3.63 | 0.77 | 0.15 | −0.29 | 19.30 | 6.61 | 0.27 | −0.90 | 0.83 | −0.37 | 0.87 | −0.67 | 0.18 | −0.29 | 0.28 | −0.48 | 0.80 | −0.25 | 3.44 | 0.10 | 0.08 | −0.02 | 0.06 | −0.02 |
Stan. Error | 1.43 | 0.09 | 0.38 | 0.11 | 0.02 | 0.01 | 0.98 | 0.43 | 0.04 | 0.02 | 0.05 | 0.05 | 0.22 | 0.05 | 0.02 | 0.02 | 0.03 | 0.03 | 0.20 | 0.03 | 0.32 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 |
Median | 18.87 | 1.12 | 3.31 | 0.83 | 0.14 | −0.30 | 18.70 | 5.97 | 0.19 | −0.93 | 0.86 | −0.39 | 0.60 | −0.60 | 0.18 | −0.27 | 0.24 | −0.44 | 0.49 | −0.28 | 3.15 | 0.08 | 0.03 | 0.00 | 0.02 | −0.01 |
SD | 6.71 | 0.41 | 1.77 | 0.51 | 0.11 | 0.05 | 4.60 | 2.01 | 0.21 | 0.01 | 0.22 | 0.24 | 1.01 | 0.25 | 0.11 | 0.08 | 0.15 | 0.15 | 0.92 | 0.14 | 1.52 | 0.09 | 0.10 | 0.09 | 0.06 | 0.02 |
Coeffic.Var (%) | 35.51 | 38.68 | 48.76 | 66.23 | 73.33 | −17.24 | 23.83 | 30.41 | 77.78 | −1.11 | 26.51 | −64.86 | 116.09 | −37.31 | 61.11 | 27.59 | 53.57 | −31.25 | 115.0 | −56.0 | 44.19 | 90.0 | 125 | −450 | 100 | −100.00 |
S.Variance | 45.07 | 0.17 | 3.13 | 0.26 | 0.01 | 0.01 | 21.17 | 4.05 | 0.04 | 0.01 | 0.05 | 0.06 | 1.03 | 0.06 | 0.01 | 0.01 | 0.02 | 0.02 | 0.85 | 0.02 | 2.30 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 |
Kurtosis | −0.92 | −1.14 | −0.79 | −0.49 | 1.94 | 0.19 | 1.22 | 1.67 | 7.83 | 1.53 | −0.10 | 0.30 | 2.90 | 8.42 | −1.10 | −0.98 | 6.37 | 2.53 | 13.56 | −0.23 | 1.13 | 1.24 | 2.41 | 21.4 | 0.20 | 5.35 |
Skewness | 0.08 | 0.12 | 0.31 | 0.14 | 1.35 | −0.37 | 1.11 | 1.59 | 2.71 | 0.39 | −0.34 | −0.05 | 1.78 | −2.45 | −0.03 | −0.36 | 2.17 | −1.32 | 3.39 | 0.87 | 0.94 | 1.40 | 1.79 | −4.60 | 1.16 | −2.19 |
Range | 24.29 | 1.36 | 6.33 | 1.91 | 0.43 | 0.21 | 18.45 | 7.15 | 0.89 | 0.45 | 0.76 | 0.98 | 3.67 | 1.20 | 0.35 | 0.29 | 0.68 | 0.64 | 4.49 | 0.49 | 6.37 | 0.34 | 0.37 | 0.46 | 0.22 | 0.09 |
Minimum | 6.88 | 0.42 | 1.11 | −0.02 | 0.01 | −0.40 | 13.20 | 4.73 | 0.12 | −1.13 | 0.41 | −0.91 | 0.01 | −1.59 | 0.01 | −0.46 | 0.13 | −0.92 | 0.05 | −0.43 | 1.20 | 0.01 | 0.01 | −0.43 | 0.00 | −0.09 |
Maximum | 31.17 | 1.78 | 7.45 | 1.89 | 0.44 | −0.19 | 31.65 | 11.88 | 1.01 | −0.68 | 1.17 | 0.07 | 3.71 | −0.39 | 0.37 | −0.17 | 0.81 | −0.28 | 4.53 | 0.07 | 7.57 | 0.35 | 0.37 | 0.03 | 0.22 | 0.00 |
Sum | 404.46 | 23.34 | 79..97 | 16.94 | 3.26 | −6.38 | 423.84 | 145.33 | 5.85 | −19.76 | 18.34 | −8.18 | 19.13 | −14.74 | 3.86 | −6.43 | 6.19 | −10.54 | 17.69 | −5.48 | 75.71 | 2.29 | 1.73 | −0.54 | 1.24 | −0.36 |
Obs. | 22 | |||||||||||||||||||||||||
Jarque-Bera | 0.79 | 1.24 | 0.91 | 0.28 | 10.17 | 0.54 | 5.90 | 11.86 | 83.19 | 2.72 | 1.33 | 0.09 | 19.37 | 87.33 | 1.12 | 1.36 | 54.37 | 12.27 | 210.5 | 2.80 | 4.42 | 8.58 | 17.08 | 498 | 4.99 | 43.79 |
p-value | 0.67 | 0.54 | 0.63 | 0.87 | 0.01 | 0.76 | 0.05 | 0.00 | 0.00 | 0.26 | 0.51 | 0.95 | 0.00 | 0.00 | 0.57 | 0.50 | 0.00 | 0.00 | 0.00 | 0.25 | 0.11 | 0.01 | 0.00 | 0.00 | 0.08 | 0.00 |
Explanatory variables | ||||||||||||||||||||||||||
LAND | LABOUR | GDPpc | INF | |||||||||||||||||||||||
Mean | 1.20 | 1273.33 | 4321.04 | 5.22 | ||||||||||||||||||||||
Standard Error | 0.03 | 983.02 | 266.33 | 0.43 | ||||||||||||||||||||||
Median | 1.22 | 280.28 | 4476.20 | 4.98 | ||||||||||||||||||||||
SD | 0.16 | 4610.79 | 1249.20 | 2.02 | ||||||||||||||||||||||
Coeffic.Var (%) | 13.33 | 362.10 | 28.91 | 38.70 | ||||||||||||||||||||||
Variance | 0.03 | 21,259,386.02 | 1,560,497.36 | 4.07 | ||||||||||||||||||||||
Kurtosis | −0.96 | 22.00 | −0.32 | −0.25 | ||||||||||||||||||||||
Skewness | −0.23 | 4.69 | −0.79 | 0.40 | ||||||||||||||||||||||
Range | 0.50 | 21,669.48 | 4133.41 | 7.24 | ||||||||||||||||||||||
Minimum | 0.94 | 246.74 | 1808.88 | 2.21 | ||||||||||||||||||||||
Maximum | 1.44 | 21,916.22 | 5942.29 | 9.45 | ||||||||||||||||||||||
Sum | 26.44 | 28,013.30 | 95,062.79 | 114.83 | ||||||||||||||||||||||
Observations | 22 | |||||||||||||||||||||||||
Jarque-Bera | 1.04 | 524.20 | 2.37 | 0.65 | ||||||||||||||||||||||
p-value | 0.60 | 0.00 | 0.31 | 0.72 |
References
- Montalbano, P.; Nenci, S.; Salvatici, L. Trade, Value Chains, and Food Security; Background paper prepared for The State of Agricultural Commodity Markets, 2015–2016; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Gustafson, S. Agri-food Processing Presents Opportunities for African Farmers, But Challenges Remain. 2022. Available online: https://ssa.foodsecurityportal.org/node/2075 (accessed on 20 November 2022).
- Webber, C.M.; Labaste, P. Building Competitiveness in Africa’s Agriculture: A Guide to Value Chain Concepts and Applications; World Bank Publications: Washington, DC, USA, 2011. [Google Scholar]
- Van Schalkwyk, H. Competitiveness and Sustainability of South Africa Agriculture. In Proceedings of the FERTASA, 57th Annual Congress, KwaZulu-Natal, Durban, South Africa, 3–4 May 2017. [Google Scholar]
- Deutsche Gesellschaft für Internationale Zusammenarbeit (GTZ). Sector Brief Namibia Agriculture. 2022. Available online: https://www.giz.de/en/downloads/giz2022-en-namibia-agriculture.pdf (accessed on 16 October 2022).
- FAO (Food and Agriculture Organisation of the United Nations). Sustainable Food Systems. Concept and Framework. Available online: http://www.fao.org/3/ca2079en/CA2079EN.pdf (accessed on 20 July 2020).
- Bojnec, S.; Ferto, I. Agro-food trade competitiveness of Central European and Balkan countries. Food Policy 2009, 34, 417–425. [Google Scholar] [CrossRef]
- Kirsten, J.; Kandiero, T.; Ngqangweni, S.; Gebrehiwet, Y. The SADC Countries and the Uruguay Round Agreement on Agriculture: A Review of Progress and Challenges; Technical Report Prepared for the World Bank; University of Pretoria: Pretoria, South Africa, 2004. [Google Scholar]
- Khor, M. The Commodities Crisis and the Global Trade in Agriculture: Present Problems and Some Proposals. In The Millennium Development Goals: Rising the Resources to Tackle World Poverty; Cheru, F., Bradford, C., Eds.; Bloomsbury Academic Publishing: London, UK, 2013; pp. 97–117. [Google Scholar] [CrossRef]
- Bahta, Y.T.; Willemse, J. The comparative advantage of South Africa soybean production. OCL 2016, 23, A301. [Google Scholar] [CrossRef] [Green Version]
- Esterhuizen, D.; van Rooyen, J.; D’Haese, I. An evaluation of the competitiveness of the agribusiness sector in South African. Compet. Forum Indiana 2006, 4, 72–85. [Google Scholar]
- Sharma, K.D.; Pathania, M.S.; Lal, H. Value chain analysis and financial viability of agro-processing industries in Himachal Pradesh. Agric. Econ. Res. Rev. 2010, 23, 515–522. [Google Scholar]
- Henchion, M.; McIntyre, B. Market access and competitiveness issues for food SMEs in Europe’s lagging rural regions (LRRs). Bri. Food J. 2005, 107, 404–422. [Google Scholar] [CrossRef]
- Mbai, S.; Moses, E.N.; Bahta, Y.T. Export Competitiveness of Namibia’s timber sector: Implication for forestry sector. For. Ideas 2021, 27, 101–113. [Google Scholar]
- Louw, A.; Troskie, G.; Geyser, M. Small millers’ and bakers’ perceptions of the limitations of agri-processing development in the wheat-milling and baking industries in rural areas in South Africa. Agrekon 2013, 52, 101–122. [Google Scholar] [CrossRef] [Green Version]
- Mlambo, C.; Mukaurumbwa, P.; Megbown, E. An investigation of the contribution of processed and unprocessed agricultural exports to economic growth in South Africa. Cogent Econ. Financ. 2019, 7, 1–16. [Google Scholar] [CrossRef]
- Bojnec, S. Trade and Revealed Comparative Advantage Measures: Regional and Central and East European Agricultural Trade. East. Eur. Econ. 2001, 39, 72–98. [Google Scholar] [CrossRef]
- Bojnec, S.; Ferto, I. Southeastern European agrofood trade specialization. Eastern Eur. Econ. 2010, 48, 22–51. [Google Scholar] [CrossRef]
- Bojnec, Š.; Fertő, I. Complementarities of trade advantage and trade competitiveness measures. Appl. Econ. 2012, 44, 399–408. [Google Scholar] [CrossRef]
- Sattar, A.A.; Diz, M.; Franklin, D.L. Competitiveness of the Food Processing Cluster in Namibia; USAID: Small and Medium Enterprise Competitiveness Enhancement Program (SMECEP) Contract Number 690-C-00-02-00002-00, Project Activity Number: 673-001; Sigma One Corporation: Kanagawa, Japan, 2003. [Google Scholar]
- Bahta, Y.T. Competitiveness of South Africa’s Agri-food Commodities. AIMS-Agri. Food 2021, 6, 964–987. [Google Scholar] [CrossRef]
- Baena-Rojas, J.; Herrero-Olarte, S. From preferential trade arrangements to free trade agreements: One of the downturns of cooperation in international relations? Soc. Sci. 2010, 9, 139. [Google Scholar] [CrossRef]
- United Nations Commodity Trade Statistics (UN Comtrade). 2022 United Nations Commodity Trade Statistics. Available online: http://comtrade.un.org/data (accessed on 15 May 2022).
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 17 December 2022).
- World Bank (WB). World Development Indicators: Export Diversification Index. 2020. Available online: http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators (accessed on 25 April 2022).
- United Nations (UN). Standard International Trade Classification. Revision 4. 2006. Available online: https://unstats.un.org/unsd/publication/SeriesM/SeriesM_34rev4E.pdf (accessed on 22 May 2022).
- Zaghini, A. Evolution of trade patterns in the new EU member states. Econ. Transit. 2005, 13, 629–658. [Google Scholar] [CrossRef]
- Balogh, J.M.; Jámbor, A. The global competitiveness of European wine producers. Br. Food J. 2017, 119, 2076–2088. [Google Scholar] [CrossRef]
- Istudor, N.; Constantin, M.; Ignat, R.; Chiripuci, B.C.; Petrescu, I.E. The Complexity of Agricultural Competitiveness: Going Beyond the Balassa Index. J. Compet. 2022, 14, 61–77. [Google Scholar]
- Lafay, G. The measurement of revealed comparative advantages. In International Modelling, Presented at XXVII Conferences of the Applied Economteric Association on International Trade, Held in Montreal, Canada, in September 1989; Dagenais, M.G., Muet, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 209–234. [Google Scholar] [CrossRef]
- De Benedictis, L.; Tamberi, M. Overall Specialization Empirics: Techniques and Applications. Open Econ. Rev. 2004, 15, 323–346. [Google Scholar] [CrossRef]
- Balassa, B. Trade liberalization and Revealed comparative advantage. Manch. Sch. Econ. Soc. Stud. 1965, 33, 99–125. [Google Scholar] [CrossRef]
- Balassa, B. Revealed comparative advantage revisited: An analysis of relative export shares of the industrialized countries, 1953–1971. Manch. Sch. Econ. Soc. Stud. 1977, 45, 327–344. [Google Scholar] [CrossRef]
- Gois, T.C.; Thomé, K.M.; Balogh, J.M. Behind a cup of coffee: International market structure and competitiveness. Compet. Rev. Int. Bus. J. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Matkovski, B.; Kalas, B.; Stanislav Zekic, S.; Jeremic, M. Agri-food competitiveness in southeast Europe. Outlook Agr. 2019, 48, 1–10. [Google Scholar] [CrossRef]
- Mikic, M. Introduction to Trade Research II: Trade Data and Statistics Commonly Used Trade Indcators: A Note. ARTNeT Capacity Building Workshop on Trade Research 22–25 March 2005, Bangkok, Thailand. Available online: https://artnet.unescap.org/tid/projects/artnetbk05_d2s3_4.pdf (accessed on 18 November 2022).
- Esterhuizen, D.; van Rooyen, C.; Masuku, M. Paradoxes in the food chain: Is there a relationship between the competitiveness of the agricultural input industry and the competitiveness of the agro-food industry in South Africa? In Paradoxes in Food Chains and Networks; Trienekens, J.H., Omta, S.W.F., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2002; pp. 463–470. [Google Scholar]
- Balogh, J.; Jámbor, A. Determinants of revealed comparative advantages: The case of cheese trade in the European Union. Acta Aliment. 2017, 46, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Ballance, R.H.; Forstner, H.; Murray, T. Consistency Tests of Alternative Measures of Comparative Advantage. Rev. Econ. Stat. 1987, 69, 157–161. [Google Scholar] [CrossRef]
- Bowen, H.P. On the theoretical interpretation of indices of trade intensity and revealed comparative advantage. Rev. World Econ. 1983, 119, 464–472. [Google Scholar] [CrossRef]
- Sanidas, E.; Shin, S.Y. Comparison of Revealed Comparative Advantage Indices with Application to Trade Tendencies of East Asian Countries; Department of Economics, Seoul National University: Seoul, Republic of Korea, 2015. [Google Scholar]
- United Nations Conference on Trade and Development (UNCTAD). United Nations Conference on Trade and Development. In Handbook on Statistics; United Nation: New York, NY, USA; Geneva, Switzerland, 2004. [Google Scholar]
- World Bank (WB). Export Diversification Index. 2013. Available online: http://www.worldbank.org/ (accessed on 24 May 2022).
- Porter, M. Competitive Advantage of Nations; Macmillan: New York, NY, USA, 1990. [Google Scholar]
- Mgeni, C.P.; Sieber, S.; Amjath-Babu, T.S.; Mutabazi, K.D. Can protectionism improve food security? Evidence from an imposed tariff on imported edible oil in Tanzania. Food Secur. 2018, 10, 799–806. [Google Scholar] [CrossRef]
- Sun, Q.; Hou, M.; Shi, S.; Cui, L.; Xi, Z. The Influence of Country Risks on the International Agricultural Trade Patterns Based on Network Analysis and Panel Data Method. Agriculture 2022, 12, 361. [Google Scholar] [CrossRef]
- Behnassi, M.; El Haiba, M. Implications of the Russia–Ukraine war for global food security. Nat. Hum. Behav. 2022, 6, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Nekmahmud Food consumption behavior, food supply chain disruption, and food security crisis during the COVID-19: The mediating effect of food price and food stress. J. Foodserv. Bus. Res. 2022, 1–27. [CrossRef]
- Yin, C.; Pereira, P.; Hua, T.; Liu, Y.; Zhu, J.; Zhao, W. Recover the food-energywater nexus from COVID-19 under sustainable development goals acceleration actions. Sci. Total Env. 2022, 817, 153013. [Google Scholar] [CrossRef]
- Zhou, L.; Tong, G. Research on the competitiveness and influencing factors of agricultural products trade between China and the countries along the “Belt and Road”. Alex. Eng. J. 2022, 61, 8919–8931. [Google Scholar] [CrossRef]
- Zia, B.; Rafiq, M.; Saqib, S.E.; Atiq, M. Agricultural Market Competitiveness in the Context of Climate Change: A Systematic Review. Sustainability 2022, 14, 3721. [Google Scholar] [CrossRef]
- Mejía, D.P.G.; Ceballos, V.H.N.; Bonilla, Y.M.B. Efficiency wages, productivity, competitiveness and opportunities of the Trade Agreement with the European Union in the agricultural sector of Cundinamarca—Colombia. Rev. Estud. Region. 2021, 122, 147–172. [Google Scholar]
- Sarris, A.; Morrison, J.E. Food Security in Africa: Market and Trade Policy for Staple Foods in Eastern and Southern Africa; Edward Elgar Publishing: Cheltenham, UK; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Giuliani, E.; Pietrobelli, C.; Rabellotti, R. Upgrading in Global Value Chains: Lessons from Latin American Clusters. World Dev. 2005, 33, 549–573. [Google Scholar] [CrossRef]
- Coates, J.; Swindale, A.; Bilinsky, P. Household Food Insecurity Access Scale (HFIAS) for Measurement of Food Access: Indicator Guide, 3rd ed.; Food and Nutrition Technical Assistance Project (FANTA); Academy for Educational Development: Washington, DC, USA, 2007. [Google Scholar]
- Salarkia, N.; Abdollahi, M.; Amini, M.; Amirabadi, M.E. Validation and Use of the HFIAS Questionnaire for Measuring Household Food Insecurity in Varamin-2009. Iran J. Nutr. 2011, 13, 374–383. [Google Scholar]
- Bhalla, G.; Handa, S.; Angeles, G.; Seidenfeld, D. The effect of cash transfers and household vulnerability on food security in Zimbabwe. Food Policy 2018, 74, 82–99. [Google Scholar] [CrossRef] [PubMed]
- Knueppel, D.; Demment, M.; Kaiser, L. Validation of the Household Food Insecurity Access Scale in rural Tanzania. Public Health Nutr. 2009, 13, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Amare, M.; Abay, K.A.; Tiberti, L.; Chamberlin, J. COVID-19 and Food Security: Panel Data Evidence from Nigeria. Food Policy 2021, 101, 102099. [Google Scholar] [CrossRef]
- Tabe-Ojong, M.P.; Gebrekidan, B.H.; Nshakira-Rukundo, E.; Borner, J.; Heckelei, T. COVID-19 in rural Africa: Food access disruptions, food insecurity and coping strategies in Kenya, Namibia, and Tanzania. Agric. Econ. 2022, 53, 719–738. [Google Scholar] [CrossRef]
- Nin-Pratt, A.; Diao, X.; Bahta, Y.T. How Important Is a Regional Free Trade Area for Southern Africa? Potential Impacts and Structural Constraints; Discussion Paper; IFPRI Discussion Paper 888; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2009; pp. 1–66. [Google Scholar]
- Cameron, C.; Trivedi, P. Micro-Econometrics: Methods and Applications; Cambridge University Press: New York, NY, USA, 2005; pp. 9–11. [Google Scholar]
- Constantin, M.; Sapena, J.; Apetrei, A.; Pătărlăgeanu, S.R. Deliver Smart, Not More! Building Economically Sustainable Competitiveness on the Ground of High Agri-Food Trade Specialization in the EU. Foods 2023, 12, 232. [Google Scholar] [CrossRef]
- Taghouti, I.; Elloumi, M.; Martinez-Gomez, V.; Garcia-Álvarez-Coque, J.M. Food Security, Competitiveness and Trade: The Case of Tunisian Agriculture. In Food Security and Sustainability: Investment and Financing along Agro-Food Chains, 1st ed.; Chapter: 12; Mergos, G., Papanastassiou, M., Eds.; Springer International Publishing: Berlin, Germany, 2016; pp. 209–228. [Google Scholar]
- Hamulczuk, M.; Pawlak, K. Determinants for international competitiveness of the food industry in 43 countries world-wide: Evidence from panel models. Equilibrium 2022, 17, 635–667. [Google Scholar] [CrossRef]
- Europian Union Commission (EU). European Competitiveness Report 2008. 2009, Brussels. Available online: Ec.europa.eu/enterprise/newsroom/cf/_getdocument.cfm?doc_id (accessed on 10 February 2023).
- Patel-Campillo, A. Agro-export specialization and food security in a sub-national context: The case of Colombian cut flowers. Camb. J. Reg. Econ. Soc. 2010, 3, 279–294. [Google Scholar] [CrossRef]
- Lovre, K. Technical Change in Agricultural Development of the Western Balkan Countries. In Emerging Technologies and the Development of Agriculture, Proceeding of Serbian Association of Agricultural Economists 152 Seminar, Novi Sad, Serbia, 30 August–1 September 2016; Serbian Association of Agricultural Economists: Belgrade, Serbia; University of Novi Sad: Novi Sad, Serbia; Institute of Agricultural Economics: Belgrade, Serbia, 2016; pp. 1–14. [Google Scholar]
- Jambor, A.; Babu, S. Competitiveness of Global Agriculture-Policy Lesson from Food Security; Springer International: Cham, Switzerland, 2016. [Google Scholar]
Variable | Coefficient | t-Value | p-Value | VIF | 1/VIF |
---|---|---|---|---|---|
Labor | −2.53 × 10−5 (6.77 × 10−6) | −3.73 * | 0.002 | 1.07 | 0.93 |
Land | −5.05 (1.560) | −3.24 * | 0.005 | 3.14 | 0.32 |
GDPpc | 2.14 × 10−4 (1.687 × 10−4) | 1.27 | 0.222 | 3.26 | 0.31 |
Inflation | −0.086 (0.078) | −1.11 | 0.284 | 1.09 | 0.92 |
Constant | 9.341 (1.591) | 5.87 * | 0.000 | Mean VIF: 2.14 | |
Prob > F | 0.0001 * | ||||
R-squared | 0.5079 | ||||
F (4,17) | 12.62 | ||||
No. of obs. | 22 | ||||
White’s test for Ho: homoscedasticity; against Ha: unrestricted heteroskedasticity | |||||
chi2(14) = 17.40 Prob > chi2 = 0.2356 | |||||
Cameron and Trivedi’s decomposition of IM-test | |||||
Source | chi2 | df | p | ||
Heteroskedasticity | 17.40 | 14 | 0.24 | ||
Skewness | 7.40 | 4 | 0.12 | ||
Kurtosis | 2.79 | 1 | 0.095 | ||
Total | 27.59 | 19 | 0.092 |
Variable | Coefficient | t-Value | p-Value | VIF | 1/VIF |
---|---|---|---|---|---|
Labor | −2.16 × 10−7 (1.52 × 10−6) | −0.14 | 0.889 | 1.07 | 0.93 |
Land | −0.6081 (0.253) | −2.40 ** | 0.028 | 3.14 | 0.32 |
GDPpc | −2.99 × 10−5 (4.06 × 10−5) | −0.74 | 0.471 | 3.26 | 0.31 |
Inflation | −0.011 (0.016) | −0.68 | 0.504 | 1.09 | 0.92 |
Constant | 1.321 (0.249) | 5.30 * | 0.000 | Mean VIF: 2.14 | |
Prob > F | 0.003 * | ||||
R-squared | 0.5229 | ||||
F (4,17) | 6.13 | ||||
No. of obs. | 22 | ||||
White’s test for Ho: homoscedasticity; against Ha: unrestricted heteroskedasticity | |||||
chi2(14) = 18.33 Prob > chi2 = 0.19 | |||||
Cameron & Trivedi’s decomposition of IM-test | |||||
Source | chi2 | df | p | ||
Heteroskedasticity | 18.33 | 14 | 0.19 | ||
Skewness | 5.25 | 4 | 0.262 | ||
Kurtosis | 1.28 | 1 | 0.258 | ||
Total | 24.86 | 19 | 0.17 |
Variable | Coefficient | t-Value | p-Value | VIF | 1/VIF |
---|---|---|---|---|---|
RCA | −0.516 (0.719) | −0.72 | 0.484 | 2.03 | 0.49 |
Labor | −6.37 × 10−5 (4.41 × 10−5) | −1.44 | 0.168 | 1.11 | 0.90 |
Land | −18.429 (8.682) | −2.12 ** | 0.050 | 4.88 | 0.20 |
GDPpc | 2.632 × 10−3 (8.844 × 10−3) | 2.98 * | 0.009 | 3.45 | 0.29 |
Inflation | −0.175 (0.328) | −0.53 | 0.601 | 1.17 | 0.85 |
Constant | 32.249 (8.868) | 3.64 * | 0.02 | Mean VIF: 2.53 | |
Prob > F | 0.0071 * | ||||
R-squared | 0.3844 | ||||
F (5,16) | 4.81 | ||||
No. of obs. | 22 | ||||
White’s test for Ho: homoscedasticity; against Ha: unrestricted heteroskedasticity | |||||
chi2(14) = 21.97 Prob > chi2 = 0.34 | |||||
Cameron & Trivedi’s decomposition of IM-test | |||||
Source | chi2 | Df | p | ||
Heteroskedasticity | 21.97 | 20 | 0.34 | ||
Skewness | 9.22 | 5 | 0.10 | ||
Kurtosis | 1.17 | 1 | 0.28 | ||
Total | 32.36 | 26 | 0.18 |
Variable | Coefficient | t-Value | p-Value | VIF | 1/VIF |
---|---|---|---|---|---|
LFI | 1.922 (2.415) | 0.80 | 0.438 | 2.10 | 0.49 |
Labor | −5.02 × 10−5 (3.97 × 10−5) | −1.27 | 0.223 | 1.07 | 0.90 |
Land | −14.652 (7.835) | −1.87 *** | 0.080 | 3.75 | 0.20 |
GDPpc | 2.58 × 10−5 (9.132 × 10−3) | 2.82 ** | 0.012 | 3.35 | 0.29 |
Inflation | −0.109 (0.312) | −0.35 | 0.731 | 1.12 | 0.85 |
Constant | 24.888 (6.346) | 3.92 * | 0.001 | Mean VIF: 2.28 | |
Prob > F | 0.0001 * | ||||
R-squared | 0.3793 | ||||
F (5,16) | 10.48 | ||||
No. of obs. | 22 | ||||
White’s test for Ho: homoscedasticity; against Ha: unrestricted heteroskedasticity | |||||
chi2(14) = 21.97 Prob > chi2 = 0.36 | |||||
Cameron and Trivedi’s decomposition of IM-test | |||||
Source | chi2 | df | p | ||
Heteroskedasticity | 21.97 | 20 | 0.36 | ||
Skewness | 9.05 | 5 | 0.11 | ||
Kurtosis | 0.73 | 1 | 0.39 | ||
Total | 31.35 | 26 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahta, Y.T.; Mbai, S. Competitiveness of Namibia’s Agri-Food Commodities: Implications for Food Security. Resources 2023, 12, 34. https://doi.org/10.3390/resources12030034
Bahta YT, Mbai S. Competitiveness of Namibia’s Agri-Food Commodities: Implications for Food Security. Resources. 2023; 12(3):34. https://doi.org/10.3390/resources12030034
Chicago/Turabian StyleBahta, Yonas T., and Salomo Mbai. 2023. "Competitiveness of Namibia’s Agri-Food Commodities: Implications for Food Security" Resources 12, no. 3: 34. https://doi.org/10.3390/resources12030034
APA StyleBahta, Y. T., & Mbai, S. (2023). Competitiveness of Namibia’s Agri-Food Commodities: Implications for Food Security. Resources, 12(3), 34. https://doi.org/10.3390/resources12030034