Boosting Biodiesel Production from Dairy-Washed Scum Oil Using Beetle Antennae Search Algorithm and Fuzzy Modelling
Abstract
:1. Introduction
- Developing a robust fuzzy model to simulate the production of biodiesel process.
- Applying the beetle antennae search algorithm for determining the optimal values of the molar ratio of methanol to oil, the concentration of KOH, the temperature of the reaction, and the reaction time.
- Increasing the production rate of biodiesel.
- Carrying out a comprehensive comparison and statistical analysis to support the proposed strategy.
2. Materials and Methods
2.1. Dataset with Permission
2.2. Method
2.2.1. Fuzzy Modelling
2.2.2. Beetle Antennae Search Algorithm
3. Results and Discussion
3.1. Modelling Phase
3.2. Optimisation Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Fuzzy Rules
- If (in1 is in1cluster1) and (in2 is in2cluster1) and (in3 is in3cluster1) and (in4 is in4cluster1) then (Output is out1cluster1) (1)
- If (in1 is in1cluster2) and (in2 is in2cluster2) and (in3 is in3cluster2) and (in4 is in4cluster2) then (Output is out1cluster2) (1)
- If (in1 is in1cluster3) and (in2 is in2cluster3) and (in3 is in3cluster3) and (in4 is in4cluster3) then (Output is out1cluster3) (1)
- If (in1 is in1cluster4) and (in2 is in2cluster4) and (in3 is in3cluster4) and (in4 is in4cluster4) then (Output is out1cluster4) (1)
- If (in1 is in1cluster5) and (in2 is in2cluster5) and (in3 is in3cluster5) and (in4 is in4cluster5) then (Output is out1cluster5) (1)
- If (in1 is in1cluster6) and (in2 is in2cluster6) and (in3 is in3cluster6) and (in4 is in4cluster6) then (Output is out1cluster6) (1)
- If (in1 is in1cluster7) and (in2 is in2cluster7) and (in3 is in3cluster7) and (in4 is in4cluster7) then (Output is out1cluster7) (1)
- If (in1 is in1cluster8) and (in2 is in2cluster8) and (in3 is in3cluster8) and (in4 is in4cluster8) then (Output is out1cluster8) (1)
- If (in1 is in1cluster9) and (in2 is in2cluster9) and (in3 is in3cluster9) and (in4 is in4cluster9) then (Output is out1cluster9) (1)
- If (in1 is in1cluster10) and (in2 is in2cluster10) and (in3 is in3cluster10) and (in4 is in4cluster10) then (Output is out1cluster10) (1)
- If (in1 is in1cluster11) and (in2 is in2cluster11) and (in3 is in3cluster11) and (in4 is in4cluster11) then (Output is out1cluster11) (1)
- If (in1 is in1cluster12) and (in2 is in2cluster12) and (in3 is in3cluster12) and (in4 is in4cluster12) then (Output is out1cluster12) (1)
- If (in1 is in1cluster13) and (in2 is in2cluster13) and (in3 is in3cluster13) and (in4 is in4cluster13) then (Output is out1cluster13) (1)
- If (in1 is in1cluster14) and (in2 is in2cluster14) and (in3 is in3cluster14) and (in4 is in4cluster14) then (Output is out1cluster14) (1)
- If (in1 is in1cluster15) and (in2 is in2cluster15) and (in3 is in3cluster15) and (in4 is in4cluster15) then (Output is out1cluster15) (1)
- If (in1 is in1cluster16) and (in2 is in2cluster16) and (in3 is in3cluster16) and (in4 is in4cluster16) then (Output is out1cluster16) (1)
- If (in1 is in1cluster17) and (in2 is in2cluster17) and (in3 is in3cluster17) and (in4 is in4cluster17) then (Output is out1cluster17) (1)
- If (in1 is in1cluster18) and (in2 is in2cluster18) and (in3 is in3cluster18) and (in4 is in4cluster18) then (Output is out1cluster18) (1)
- If (in1 is in1cluster19) and (in2 is in2cluster19) and (in3 is in3cluster19) and (in4 is in4cluster19) then (Output is out1cluster19) (1)
References
- Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Toscano, G.; De Francesco, C.; Gasperini, T.; Fabrizi, S.; Duca, D.; Ilari, A. Quality Assessment and Classification of Feedstock for Bioenergy Applications Considering ISO 17225 Standard on Solid Biofuels. Resources 2023, 12, 69. [Google Scholar] [CrossRef]
- Zakaria, Z.; Kamarudin, S.K.; Abd Wahid, K.A.; Abu Hassan, S.H. The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system. Renew. Sustain. Energy Rev. 2021, 144, 110984. [Google Scholar] [CrossRef]
- Mat Nawi, Z.; Kamarudin, S.K.; Sheikh Abdullah, S.R.; Lam, S.S. The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle. Energy 2019, 166, 17–31. [Google Scholar] [CrossRef]
- Burnete, N.V.; Mariasiu, F.; Depcik, C.; Barabas, I.; Moldovanu, D. Review of thermoelectric generation for internal combustion engine waste heat recovery. Prog. Energy Combust. Sci. 2022, 91, 101009. [Google Scholar] [CrossRef]
- Segura, F.; Andújar, J.M. Modular PEM Fuel Cell SCADA & Simulator System. Resources 2015, 4, 692–712. [Google Scholar]
- Zakaria, Z.; Kamarudin, S.K.; Wahid, K.A.A. Fuel cells as an advanced alternative energy source for the residential sector applications in Malaysia. Int. J. Energy Res. 2021, 45, 5032–5057. [Google Scholar] [CrossRef]
- Fadzillah, D.M.; Kamarudin, S.K.; Zainoodin, M.A.; Masdar, M.S. Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview. Int. J. Hydrog. Energy 2019, 44, 3031–3054. [Google Scholar] [CrossRef]
- Ketov, A.; Sliusar, N.; Tsybina, A.; Ketov, I.; Chudinov, S.; Krasnovskikh, M.; Bosnic, V. Plant Biomass Conversion to Vehicle Liquid Fuel as a Path to Sustainability. Resources 2022, 11, 75. [Google Scholar] [CrossRef]
- Duca, D.; Toscano, G. Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability. Resources 2022, 11, 57. [Google Scholar] [CrossRef]
- Pizzi, A.; Duca, D.; Rossini, G.; Fabrizi, S.; Toscano, G. Biofuel, Bioenergy and Feed Valorization of By-Products and Residues from Hevea brasiliensis Cultivation to Enhance Sustainability. Resources 2020, 9, 114. [Google Scholar] [CrossRef]
- Ibrahim, N.; Kamarudin, S.K.; Minggu, L.J. Biofuel from biomass via photo-electrochemical reactions: An overview. J. Power Sources 2014, 259, 33–42. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Li, D.; Meng, X.; Zhan, G.; Wang, Y.; Zhang, A.; Sun, Y.; Ruan, R.; Ragauskas, A.J. Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process. Appl. Energy 2022, 323, 119629. [Google Scholar] [CrossRef]
- Santana, J.C.C.; Miranda, A.C.; Souza, L.; Yamamura, C.L.K.; Coelho, D.d.F.; Tambourgi, E.B.; Berssaneti, F.T.; Ho, L.L. Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations. Sustainability 2021, 13, 9185. [Google Scholar] [CrossRef]
- Olabi, A.G.; Alami, A.H.; Alasad, S.; Aljaghoub, H.; Sayed, E.T.; Shehata, N.; Rezk, H.; Abdelkareem, M.A. Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations. Fermentation 2022, 8, 649. [Google Scholar] [CrossRef]
- Gaur, A.; Mishra, S.; Chowdhury, S.; Baredar, P.; Verma, P. A review on factor affecting biodiesel production from waste cooking oil: An Indian perspective. Mater. Today Proc. 2021, 46, 5594–5600. [Google Scholar] [CrossRef]
- Sayed, E.T.; Olabi, A.G.; Elsaid, K.; Al Radi, M.; Semeraro, C.; Doranehgard, M.H.; Eltayeb, M.E.; Abdelkareem, M.A. Application of artificial intelligence techniques for modeling, optimizing, and controlling desalination systems powered by renewable energy resources. J. Clean. Prod. 2023, 413, 137486. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelghafar, A.A.; Maghrabie, H.M.; Sayed, E.T.; Rezk, H.; Radi, M.A.; Obaideen, K.; Abdelkareem, M.A. Application of artificial intelligence for prediction, optimization, and control of thermal energy storage systems. Therm. Sci. Eng. Prog. 2023, 39, 101730. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Semeraro, C.; Radi, M.A.; Rezk, H.; Muhaisen, O.; Al-Isawi, O.A.; Sayed, E.T. Artificial neural networks applications in partially shaded PV systems. Therm. Sci. Eng. Prog. 2023, 37, 101612. [Google Scholar] [CrossRef]
- Nassef, A.M.; Sayed, E.T.; Rezk, H.; Abdelkareem, M.A.; Rodriguez, C.; Olabi, A.G. Fuzzy-modeling with Particle Swarm Optimization for enhancing the production of biodiesel from Microalga. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 2094–2103. [Google Scholar] [CrossRef]
- Inayat, A.; Nassef, A.M.; Rezk, H.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30. Sci. Total Environ. 2019, 666, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Yatish, K.V.; Lalithamba, H.S.; Suresh, R.; Arun, S.B.; Kumar, P.V. Optimization of scum oil biodiesel production by using response surface methodology. Process Saf. Environ. Prot. 2016, 102, 667–672. [Google Scholar] [CrossRef]
- Srikanth, H.V.; Venkatesh, J.; Godiganur, S.; Venkateswaran, S.; Manne, B. Bio-based diluents improve cold flow properties of dairy washed milk-scum biodiesel. Renew. Energy 2017, 111, 168–174. [Google Scholar] [CrossRef]
- Srikanth, H.V.; Venkatesh, J.; Godiganur, S. Box-Behnken Response Surface Methodology for Optimization of Process Parameters for Dairy Washed Milk Scum Biodiesel Production. Biofuels 2021, 12, 113–123. [Google Scholar] [CrossRef]
- Ramalingam, S.; Sudar, S.; Balamurugan, R.; Naveen, R. Performance and emission behavior of biofuel from milk scum: A waste product from dairy industry. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 968–976. [Google Scholar] [CrossRef]
- Ruan, D.; Kerre, E.E. Fuzzy If-Then Rules in Computational Intelligence: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000; Volume 553. [Google Scholar]
- Jiang, X.; Li, S. BAS: Beetle antennae search algorithm for optimization problems. arXiv 2017, arXiv:1710.10724. [Google Scholar] [CrossRef]
No. | Methanol to Oil Ratio (mol/mol) | Reaction Time (min) | Catalyst (KOH, wt%) | Reaction Temperature (°C) | Biodiesel Yield (%) | No. | Methanol to Oil Ratio (mol/mol) | Reaction Time (min) | Catalyst (KOH, wt%) | Reaction Temperature (°C) | Biodiesel Yield (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 7.5 | 30 | 1.6 | 52.5 | 83.23 | 16 | 7.5 | 90 | 1.6 | 65 | 83.67 |
2 | 7.5 | 90 | 0.6 | 65 | 75.83 | 17 | 3 | 90 | 0.6 | 52.5 | 84.27 |
3 | 7.5 | 150 | 1.6 | 52.5 | 87.31 | 18 | 7.5 | 150 | 1.1 | 40 | 83.94 |
4 | 12 | 150 | 1.1 | 52.5 | 86.25 | 19 | 3 | 90 | 1.6 | 52.5 | 82.6 |
5 | 12 | 90 | 1.1 | 65 | 75.73 | 20 | 7.5 | 90 | 1.1 | 52.5 | 90.4 |
6 | 12 | 90 | 0.6 | 52.5 | 73.85 | 21 | 7.5 | 90 | 1.1 | 52.5 | 90.4 |
7 | 3 | 30 | 1.1 | 52.5 | 88.58 | 22 | 12 | 30 | 1.1 | 52.5 | 75.67 |
8 | 7.5 | 90 | 1.6 | 40 | 86.5 | 23 | 7.5 | 150 | 0.6 | 52.5 | 77.48 |
9 | 7.5 | 90 | 1.1 | 52.5 | 92.4 | 24 | 3 | 90 | 1.1 | 65 | 83.9 |
10 | 12 | 90 | 1.6 | 52.5 | 87.69 | 25 | 7.5 | 90 | 0.6 | 40 | 82.17 |
11 | 7.5 | 30 | 1.1 | 40 | 85.1 | 26 | 7.5 | 90 | 1.1 | 52.5 | 91.4 |
12 | 7.5 | 30 | 0.6 | 52.5 | 80.9 | 27 | 7.5 | 30 | 1.1 | 65 | 79.02 |
13 | 7.5 | 90 | 1.1 | 52.5 | 90.4 | 28 | 3 | 150 | 1.1 | 52.5 | 78.67 |
14 | 12 | 90 | 1.1 | 40 | 85.81 | 29 | 7.5 | 150 | 1.1 | 65 | 80.85 |
15 | 3 | 90 | 1.1 | 40 | 82.98 |
RMSE | Coefficient of Determination (R2) | ||||
---|---|---|---|---|---|
Train | Test | All | Train | Test | All |
0.3162 | 1.2145 | 0.7257 | 0.9958 | 0.9614 | 0.9810 |
Method | Methanol-to-Oil Molar Ratio | Reaction Time (min) | KOH Concentration wt% | Temperature °C | Yield (%) |
---|---|---|---|---|---|
Exp. [24] | 7.5 | 90 | 1.1 | 52.5 | 92.4 |
RSM [24] | 7.5 | 90 | 1.1 | 52.5 | 92.0 |
BAS and Fuzzy | 9.6 | 120 | 1.36 | 65 | 98.16 |
PSO | SCA | BAS | |
---|---|---|---|
Maximum | 98.1560 | 98.1560 | 98.1560 |
Minimum | 93.4808 | 95.8681 | 96.7525 |
Average | 96.7275 | 97.8112 | 98.0157 |
STD | 0.7883 | 0.5764 | 0.4282 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salameh, T.; Rezk, H.; Issa, U.; Kamarudin, S.K.; Abdelkareem, M.A.; Olabi, A.G.; Alkasrawi, M. Boosting Biodiesel Production from Dairy-Washed Scum Oil Using Beetle Antennae Search Algorithm and Fuzzy Modelling. Resources 2023, 12, 131. https://doi.org/10.3390/resources12110131
Salameh T, Rezk H, Issa U, Kamarudin SK, Abdelkareem MA, Olabi AG, Alkasrawi M. Boosting Biodiesel Production from Dairy-Washed Scum Oil Using Beetle Antennae Search Algorithm and Fuzzy Modelling. Resources. 2023; 12(11):131. https://doi.org/10.3390/resources12110131
Chicago/Turabian StyleSalameh, Tareq, Hegazy Rezk, Usama Issa, Siti Kartom Kamarudin, Mohammad Ali Abdelkareem, Abdul Ghani Olabi, and Malek Alkasrawi. 2023. "Boosting Biodiesel Production from Dairy-Washed Scum Oil Using Beetle Antennae Search Algorithm and Fuzzy Modelling" Resources 12, no. 11: 131. https://doi.org/10.3390/resources12110131
APA StyleSalameh, T., Rezk, H., Issa, U., Kamarudin, S. K., Abdelkareem, M. A., Olabi, A. G., & Alkasrawi, M. (2023). Boosting Biodiesel Production from Dairy-Washed Scum Oil Using Beetle Antennae Search Algorithm and Fuzzy Modelling. Resources, 12(11), 131. https://doi.org/10.3390/resources12110131